Abstract Lasting updrafts are necessary to produce severe hail; conventional wisdom suggests that extremely large hailstones require updrafts of commensurate strength. Because updraft strength is largely controlled by convective available potential energy (CAPE), one would expect environments with larger CAPE to be conducive to storms producing larger hail. By systematically varying CAPE in a horizontally homogeneous initial environment, we simulate hail production in high-shear, high-instability supercell storms using Cloud Model 1 and a detailed 3D hail growth trajectory model. Our results suggest that CAPE modulates the updraft’s strength, width, and horizontal wind field, as well as the liquid water content along hailstones’ trajectories, all of which have a significant impact on final hail sizes. In particular, hail sizes are maximized for intermediate CAPE values in the range we examined. Results show a non-monotonic relationship between the hailstones’ residence time and CAPE due to changes to the updraft wind field. The ratio of updraft area to southerly wind speed within the updraft serves as a proxy for residence time. Storms in environments with large CAPE may produce smaller hail because the in-updraft horizontal wind speeds become too great, and hailstones are prematurely ejected out of the optimal growth region. Liquid water content (LWC) along favorable hailstone pathways also exhibits peak values for intermediate CAPE values, owing to the horizontal displacement across the midlevel updraft of moist inflow air from differing source levels. In other words, larger CAPE does not equal larger hail, and storm-structural nuances must be examined. 
                        more » 
                        « less   
                    
                            
                            The Evolution of Hail Production in Simulated Supercell Storms
                        
                    
    
            Abstract Hailstorms pose a significant socioeconomic risk, necessitating detailed assessments of how the hail threat changes throughout their lifetimes. Hail production involves the favorable juxtaposition of ingredients, but how storm evolution affects these ingredients is unknown, limiting understanding of how hail production evolves. Unfortunately, neither surface hail reports nor radar-based swath estimates have adequate resolution or details needed to assess evolving hail production. Instead, we use a novel approach of coupling a detailed hail trajectory model to idealized convective storm simulations to better understand storm evolution’s influence on hail production. Hail production varies substantially throughout storms’ mature phases: maximum sizes vary by a factor of two, and the concentration of severe hail more than fivefold during 45-60-min periods. This variability arises from changes in updraft properties, which come from (i) changes in low-level convergence, and (ii) internal storm dynamics, including anticyclonic vortex shedding/storm splitting, and the response of the updraft’s airflow and supercooled liquid water content to these events. Hodograph shape strongly affects such behaviors. Straighter hodographs lead to more prolific hail production through wider updrafts and weaker mesocyclones, and a periodicity in hail size metrics associated with anticyclonic vortex shedding and/or storm splitting. In contrast, a curved hodograph (favorable for tornadoes) led to a storm with a stronger but more compact updraft, which occasionally produced giant (10-cm) hail, but that was a less-prolific severe hail producer overall. Unless storms are adequately sampled throughout their lifecycles, snapshots from ground reports will insufficiently resolve the true nature of hail production. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10341740
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- ISSN:
- 0022-4928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hodographs are valuable sources of pattern recognition in severe convective storm forecasting. Certain shapes are known to discriminate between single cell, multicell, and supercell storm organization. Various derived quantities such as storm-relative helicity (SRH) have been found to predict tornado potential and intensity. Over the years, collective research has established a conceptual model for tornadic hodographs (large and “looping”, with high SRH). However, considerably less attention has been given to constructing a similar conceptual model for hodographs of severe hail. This study explores how hodograph shape may differentiate between the environments of severe hail and tornadoes. While supercells are routinely assumed to carry the potential to produce all hazards, this is not always the case, and we explore why. The Storm Prediction Center (SPC) storm mode dataset is used to assess the environments of 8,958 tornadoes and 7,256 severe hail reports, produced by right- and left-moving supercells. Composite hodographs and indices to quantify wind shear are assessed for each hazard, and clear differences are found between the kinematic environments of hail-producing and tornadic supercells. The sensitivity of the hodograph to common thermodynamic variables was also examined, with buoyancy and moisture found to influence the shape associated with the hazards. The results suggest that differentiating between tornadic and hail-producing storms may be possible using properties of the hodograph alone. While anticipating hail size does not appear possible using only the hodograph, anticipating tornado intensity appears readily so. When coupled with buoyancy profiles, the hodograph may assist in differentiating between both hail size and tornado intensity.more » « less
- 
            null (Ed.)Abstract A detailed microphysical model of hail growth is developed and applied to idealized numerical simulations of deep convective storms. Hailstone embryos of various sizes and densities may be initialized in and around the simulated convective storm updraft, and then are tracked as they are advected and grow through various microphysical processes. Application to an idealized squall line and supercell storm results in a plausibly realistic distribution of maximum hailstone sizes for each. Simulated hail growth trajectories through idealized supercell storms exhibit many consistencies with previous hail trajectory work that used observed storms. Systematic tests of uncertain model parameters and parameterizations are performed, with results highlighting the sensitivity of hail size distributions to these changes. A set of idealized simulations is performed for supercells in environments with varying vertical wind shear to extend and clarify our prior work. The trajectory calculations reveal that, with increased zonal deep-layer shear, broader updrafts lead to increased residence time and thus larger maximum hail sizes. For cases with increased meridional low-level shear, updraft width is also increased, but hailstone sizes are smaller. This is a result of decreased residence time in the updraft, owing to faster northward flow within the updraft that advects hailstones through the growth region more rapidly. The results suggest that environments leading to weakened horizontal flow within supercell updrafts may lead to larger maximum hailstone sizes.more » « less
- 
            Abstract Supercell storms are commonly responsible for severe hail, which is the costliest severe storm hazard in the United States and elsewhere. Radar observations of such storms are common and have been leveraged to estimate hail size and severe hail occurrence. However, many established relationships between radar-observed storm characteristics and severe hail occurrence have been found using data from few storms and in isolation from other radar metrics. This study leverages a 10-yr record of polarimetric Doppler radar observations in the United States to evaluate and compare radar observations of thousands of severe hail–producing supercells based on their maximum hail size. In agreement with prior studies, it is found that increasing hail size relates to increasing volume of high (≥50 dBZ) radar reflectivity, increasing midaltitude mesocyclone rotation (azimuthal shear), increasing storm-top divergence, and decreased differential reflectivity and copolar correlation coefficient at low levels (mostly below the environmental 0°C level). New insights include increasing vertical alignment of the storm mesocyclone with increasing hail size and a Doppler velocity spectrum width minimum aloft near storm center that increases in area with increasing hail size and is argued to indicate increasing updraft width. To complement the extensive radar analysis, near-storm environments from reanalyses are compared and indicate that the greatest environmental differences exist in the middle troposphere (within the hail growth region), especially the wind speed perpendicular to storm motion. Recommendations are given for future improvements to radar-based hail-size estimation.more » « less
- 
            Abstract Many studies have aimed to identify novel storm characteristics that are indicative of current or future severe weather potential using a combination of ground-based radar observations and severe reports. However, this is often done on a small scale using limited case studies on the order of tens to hundreds of storms due to how time-intensive this process is. Herein, we introduce the GridRad-Severe dataset, a database including ∼100 severe weather days per year and upward of 1.3 million objectively tracked storms from 2010 to 2019. Composite radar volumes spanning objectively determined, report-centered domains are created for each selected day using the GridRad compositing technique, with dates objectively determined using report thresholds defined to capture the highest-end severe weather days from each year, evenly distributed across all severe report types (tornadoes, severe hail, and severe wind). Spatiotemporal domain bounds for each event are objectively determined to encompass both the majority of reports and the time of convection initiation. Severe weather reports are matched to storms that are objectively tracked using the radar data, so the evolution of the storm cells and their severe weather production can be evaluated. Herein, we apply storm mode (single-cell, multicell, or mesoscale convective system storms) and right-moving supercell classification techniques to the dataset, and revisit various questions about severe storms and their bulk characteristics posed and evaluated in past work. Additional applications of this dataset are reviewed for possible future studies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    