skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frequency Response-Based Uncertainty Analysis of Vibration System Utilizing Multiple Response Gaussian Process
This research concerns the uncertainty analysis and quantification of the vibration system utilizing the frequency response function (FRF) representation with statistical metamodeling. Different from previous statistical metamodels that are built for individual frequency points, in this research we take advantage of the inherent correlation of FRF values at different frequency points and resort to the multiple response Gaussian process (MRGP) approach. To enable the analysis, vector fitting method is adopted to represent an FRF using a reduced set of parameters with high accuracy. Owing to the efficiency and accuracy of the statistical metamodel with a small set of parameters, Bayesian inference can then be incorporated to realize model updating and uncertainty identification as new measurement/evidence is acquired. The MRGP metamodel developed under this new framework can be used effectively for two-way uncertainty propagation analysis, i.e., FRF prediction and uncertainty identification. Case studies are conducted for illustration and verification.  more » « less
Award ID(s):
1741174
PAR ID:
10123740
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Vibration and Acoustics
Volume:
141
Issue:
5
ISSN:
1048-9002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mode shape information plays the essential role in deciding the spatial pattern of vibratory response of a structure. The uncertainty quantification of mode shape, i.e., predicting mode shape variation when the structure is subjected to uncertainty, can provide guidance for robust design and control. Nevertheless, computational efficiency is a challenging issue. Direct Monte Carlo simulation is unlikely to be feasible especially for a complex structure with a large number of degrees-of-freedom. In this research, we develop a new probabilistic framework built upon the Gaussian process meta-modeling architecture to analyze mode shape variation. To expedite the generation of input data set for meta-model establishment, a multi-level strategy is adopted which can blend a large amount of low-fidelity data acquired from order-reduced analysis with a small amount of high-fidelity data produced by high-dimensional full finite element analysis. To take advantage of the intrinsic relation of spatial distribution of mode shape, a multi-response strategy is incorporated to predict mode shape variation at different locations simultaneously. These yield a multi-level, multi-response Gaussian process that can efficiently and accurately quantify the effect of structural uncertainty to mode shape variation. Comprehensive case studies are carried out for demonstration and validation. 
    more » « less
  2. Abstract Nonlinear response history analysis (NLRHA) is generally considered to be a reliable and robust method to assess the seismic performance of buildings under strong ground motions. While NLRHA is fairly straightforward to evaluate individual structures for a select set of ground motions at a specific building site, it becomes less practical for performing large numbers of analyses to evaluate either (1) multiple models of alternative design realizations with a site‐specific set of ground motions, or (2) individual archetype building models at multiple sites with multiple sets of ground motions. In this regard, surrogate models offer an alternative to running repeated NLRHAs for variable design realizations or ground motions. In this paper, a recently developed surrogate modeling technique, called probabilistic learning on manifolds (PLoM), is presented to estimate structural seismic response. Essentially, the PLoM method provides an efficient stochastic model to develop mappings between random variables, which can then be used to efficiently estimate the structural responses for systems with variations in design/modeling parameters or ground motion characteristics. The PLoM algorithm is introduced and then used in two case studies of 12‐story buildings for estimating probability distributions of structural responses. The first example focuses on the mapping between variable design parameters of a multidegree‐of‐freedom analysis model and its peak story drift and acceleration responses. The second example applies the PLoM technique to estimate structural responses for variations in site‐specific ground motion characteristics. In both examples, training data sets are generated for orthogonal input parameter grids, and test data sets are developed for input parameters with prescribed statistical distributions. Validation studies are performed to examine the accuracy and efficiency of the PLoM models. Overall, both examples show good agreement between the PLoM model estimates and verification data sets. Moreover, in contrast to other common surrogate modeling techniques, the PLoM model is able to preserve correlation structure between peak responses. Parametric studies are conducted to understand the influence of different PLoM tuning parameters on its prediction accuracy. 
    more » « less
  3. Microphone identification addresses the challenge of identifying the microphone signature from the recorded signal. An audio recording system (consisting of microphone, A/D converter, codec, etc.) leaves its unique traces in the recorded signal. Microphone system can be modeled as a linear time invariant system. The impulse response of this system is convoluted with the audio signal which is recorded using “the” microphone. This paper makes an attempt to identify "the" microphone from the frequency response of the microphone. To estimate the frequency response of a microphone, we employ sine sweep method which is independent of speech characteristics. Sinusoidal signals of increasing frequencies are generated, and subsequently we record the audio of each frequency. Detailed evaluation of sine sweep method shows that the frequency response of each microphone is stable. A neural network based classifier is trained to identify the microphone from recorded signal. Results show that the proposed method achieves microphone identification having 100% accuracy. 
    more » « less
  4. Ion-neutral coupling is responsible for dissipating energy deposited into the high-latitude ionosphere during geomagnetically active periods. The neutral wind response time, or the ion-neutral coupling efficiency, is not well characterized, with a wide range of reported response times. Additionally, how this coupling efficiency varies with geomagnetic activity level is not well understood, with few studies addressing the impact of geomagnetic activity level on neutral wind response time. In this study, a statistical analysis of the neutral wind response time during substorm periods is performed. We use data from Scanning Doppler Imagers (SDIs) and the Poker Flat Incoherent Scatter Radar (PFISR) to calculate the neutral wind response time using the new weighted windowed time-lagged correlation method. Substorm events were found using SuperMAG substorm lists and All Sky Imagers (ASIs). This statistical analysis resulted in 23 substorm events, with an average response time of 16 min. To determine the controlling factors of this response time, geomagnetic and ionospheric parameters, such as IMF strength and orientation, SYM/H index, AE index, and electron density, are investigated for the statistical substorm set. A superposed epoch analysis of the parameters is performed to determine average geospace conditions required for fast neutral wind responses. It was found that quiet-time conditions in AE and SYM-H indices, a southward turning of IMF around 1.5 h before substorm onset time, and large electron densities lead to faster neutral wind response times. Based on the geomagnetic indices results, it was suggested that thermospheric pre-conditioning may play a role in neutral wind response times. 
    more » « less
  5. The success of the unscented Kalman filter can be jeopardized if the required initial parameters are not identified carefully. These parameters include the initial guesses and the levels of uncertainty in the target parameters and the process and measurement noise parameters. While a set of appropriate initial target parameters give the unscented Kalman filter a head start, the uncertainty levels and noise parameters set the rate of convergence in the process. Therefore, due to the coupling effect of these parameters, an inclusive approach is desired to maintain the chance of convergence for expensive experimental tests. In this paper, a framework is proposed that, via a virtual emulation prior to the experiment, determines a set of initial conditions to ensure a successful application of the online parameter identification. A Bayesian optimization method is proposed, which considers the level of confidence in the initial guesses for the target parameters to suggest the appropriate noise covariance matrices. The methodology is validated on a five-story shear frame tested on a shake table. The results indicate that, indeed, a trade-off can be made between the robustness of the online updating and the final parameter accuracy. 
    more » « less