skip to main content


Title: Machine learning based novelty detection using modal analysis
Abstract

Among many structural assessment methods, the change of modal characteristics is considered a well‐accepted damage detection method. However, the presence of environmental or operational variations may pollute the baseline and prevent a dependable assessment of the change. In recent years, the use of machine learning algorithms gained interest within structural health community, especially due to their ability and success in the elimination of ambient uncertainty. This paper proposes an end‐to‐end architecture to detect damage reliably by employing machine learning algorithms. The proposed approach streamlines (a) collection of structural response data, (b) modal analysis using system identification, (c) learning model, and (d) novelty detection. The proposed system aims to extract latent features of accessible modal parameters such as natural frequencies and mode shapes measured at undamaged target structure under temperature uncertainty and to reconstruct a new representation of these features that is similar to the original using well‐established machine learning methods for damage detection. The deviation between measured and reconstructed parameters, also known as novelty index, is the essential information for detecting critical changes in the system. The approach is evaluated by analyzing the structural response data obtained from finite element models and experimental structures. For the machine learning component of the approach, both principal component analysis (PCA) and autoencoder (AE) are examined. While mode shapes are known to be a well‐researched damage indicator in the literature, to our best knowledge, this research is the first time that unsupervised machine learning is applied using PCA and AE to utilize mode shapes in addition to natural frequencies for effective damage detection. The detection performance of this pipeline is compared to a similar approach where its learning model does not utilize mode shapes. The results demonstrate that the effectiveness of the damage detection under temperature variability improves significantly when mode shapes are used in the training of learning algorithm. Especially for small damages, the proposed algorithm performs better in discriminating system changes.

 
more » « less
NSF-PAR ID:
10123957
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer-Aided Civil and Infrastructure Engineering
Volume:
34
Issue:
12
ISSN:
1093-9687
Page Range / eLocation ID:
p. 1119-1140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Natural rock arches are rare and beautiful geologic landforms with important cultural value. As such, their management requires periodic assessment of structural integrity to understand environmental and anthropogenic influences on arch stability. Measurements of passive seismic vibrations represent a rapid and non-invasive technique to describe the dynamic properties of natural arches, including resonant frequencies, modal damping ratios, and mode shapes, which can be monitored over time for structural health assessment. However, commonly applied spectral analysis tools are often limited in their ability to resolve characteristics of closely spaced or complex higher-order modes. Therefore, we investigate two techniques well-established in the field of civil engineering through application to a set of natural arches previously characterized using polarization analysis and spectral peak-picking techniques. Results from enhanced frequency domain decomposition and parametric covariance-driven stochastic subspace identification modal analyses showed generally good agreement with spectral peak-picking and frequency-dependent polarizationanalyses. However, we show that these advanced techniques offer the capability to resolve closely spaced modes including their corresponding modal damping ratios. In addition, due to preservation of phase information, enhanced frequency domain decomposition allows for direct and convenient three-dimensional visualization of mode shapes. These techniques provide detailed characterization of dynamic parameters, which can be monitored to detect structural changes indicating damage and failure, and in addition have the potential to improve numerical models used for arch stability assessment. Results of our study encourage broad adoption and application of these advanced modal analysis techniques for dynamic analysis of a wide range of geological features. 
    more » « less
  2. null (Ed.)
    Loss of operation or devastating damage to buildings and industrial structures, as well as equipment housed in them, has been observed due to earthquake-induced vibrations. A common source of operational downtime is due to the performance reduction of vital equipment, which are sensitive to the total transmitted acceleration. A well-known method of protecting such equipment is seismic isolation of the equipment itself (or a group of equipment), as opposed to the entire structure due to the lower cost of implementation. The first objective of this dissertation is assessing a rolling isolation system (RIS) based on existing design guidelines for telecommunications equipment. A discrepancy is observed between the required response spectrum (RRS) and the one and only accelerogram recommended in the guideline. Several filters are developed to generate synthetic accelerograms that are compatible with the RRS. The generated accelerograms are used for probabilistic assessment of a RIS that is acceptable per the guideline. This assessment reveals large failure probability due to displacement demands in excess of the displacement capacity of the RIS. When the displacement demands on an isolation system are in excess of its capacity, impacts result in spikes in transmitted acceleration. Therefore, the second objective of this dissertation is to design impact prevention/mitigation mechanisms. A dual-mode system is proposed where the behavior changes when the displacement exceeds a predefined threshold. A new piecewise optimal control approach is developed and applied to find the best possible mechanism for the region beyond the threshold. By utilizing the designed curves obtained from the proposed optimal control procedure, a Kelvin-Voigt device is tuned for illustrative purposes. On the other hand, the preference for protecting equipment decreases as the earthquake intensity increases. In extreme seismic loading, the response mitigation of the primary structure (i.e., life safety and collapse prevention) is of greater concern than protecting isolated equipment. Therefore, the third objective of this dissertation is to develop an innovative dual-mode system that can behave as equipment isolation under low to moderate seismic loading and passively transition to behave as a vibration absorber for the primary structure under extreme seismic loading. To reduce the computational cost of simulating a large linear elastic structure with nonlinear attachments (i.e., equipment isolation with cubic hardening nonlinearity), a reduced order modeling method is introduced that can capture the behavior of such nonlinear coupled systems. The method is applied to study the feasibility of dual-mode vibration isolation/absorber. To this end, nonlinear transmissibility curves for the roof displacement and isolated mass total acceleration are developed from the steady-state responses of dual-mode systems using the harmonic balanced method. The final objective of this dissertation is to extend the reduced order modeling method developed for linear elastic structure with nonlinear attachment to inelastic structures (without attachments). The new inelastic model condensation (IMC) method uses the modal properties of the full structural model (in the elastic range) to construct a linear reduced order model in conjunction with a hysteresis model to capture the hysteretic inter-story restoring forces. The parameters of these hysteretic forces are easily tuned, in order to fit the inelastic behavior of the condensed structure to that of the full model under a variety of simple loading scenarios. The fidelity of structural models condensed in this way is demonstrated via simulation for different ground motion intensities on three different building structures with various heights. The simplicity, accuracy, and efficiency of this approach could significantly alleviate the computational burden of performance-based earthquake engineering. 
    more » « less
  3. Principal Components Analysis (PCA) is a dimension-reduction technique widely used in machine learning and statistics. However, due to the dependence of the principal components on all the dimensions, the components are notoriously hard to interpret. Therefore, a variant known as sparse PCA is often preferred. Sparse PCA learns principal components of the data but enforces that such components must be sparse. This has applications in diverse fields such as computational biology and image processing. To learn sparse principal components, it’s well known that standard PCA will not work, especially in high dimensions, and therefore algorithms for sparse PCA are often studied as a separate endeavor. Various algorithms have been proposed for Sparse PCA over the years, but given how fundamental it is for applications in science, the limits of efficient algorithms are only partially understood. In this work, we study the limits of the powerful Sum of Squares (SoS) family of algorithms for Sparse PCA. SoS algorithms have recently revolutionized robust statistics, leading to breakthrough algorithms for long-standing open problems in machine learning, such as optimally learning mixtures of gaussians, robust clustering, robust regression, etc. Moreover, it is believed to be the optimal robust algorithm for many statistical problems. Therefore, for sparse PCA, it’s plausible that it can beat simpler algorithms such as diagonal thresholding that have been traditionally used. In this work, we show that this is not the case, by exhibiting strong tradeoffs between the number of samples required, the sparsity and the ambient dimension, for which SoS algorithms, even if allowed sub-exponential time, will fail to optimally recover the component. Our results are complemented by known algorithms in literature, thereby painting an almost complete picture of the behavior of efficient algorithms for sparse PCA. Since SoS algorithms encapsulate many algorithmic techniques such as spectral or statistical query algorithms, this solidifies the message that known algorithms are optimal for sparse PCA. Moreover, our techniques are strong enough to obtain similar tradeoffs for Tensor PCA, another important higher order variant of PCA with applications in topic modeling, video processing, etc. 
    more » « less
  4. null (Ed.)
    This article details the implementation of a novel passive structural health monitoring approach for damage detection in wind turbine blades using airborne sound. The approach utilizes blade-internal microphones to detect trends, shifts, or spikes in the sound pressure level of the blade cavity using a limited network of internally distributed airborne acoustic sensors, naturally occurring passive system excitation, and periodic measurement windows. A test campaign was performed on a utility-scale wind turbine blade undergoing fatigue testing to demonstrate the ability of the method for structural health monitoring applications. The preliminary audio signal processing steps used in the study, which were heavily influenced by those methods commonly utilized in speech-processing applications, are discussed in detail. Principal component analysis and K-means clustering are applied to the feature-space representation of the data set to identify any outliers (synonymous with deviations from the normal operation of the wind turbine blade) in the measurements. The performance of the system is evaluated based on its ability to detect those structural events in the blade that are identified by making manual observations of the measurements. The signal processing methods proposed within the article are shown to be successful in detecting structural and acoustic aberrations experienced by a full-scale wind turbine blade undergoing fatigue testing. Following the assessment of the data, recommendations are given to address the future development of the approach in terms of physical limitations, signal processing techniques, and machine learning options. 
    more » « less
  5. Composite materials are increasingly used in the wind industries. Damage detection and health monitoring of composite materials are challenging due to the complex internal structure and unique material properties. Digital image correlation (DIC) and acoustic emission (AE) are both used for damage detection in structures. In this work, DIC performs a full-field strain measurement on the surface of the carbon-fiber specimen while AE continuously monitors and records the AE signals generated from specimen subsurface structure failures. These health monitoring techniques are integrated and evaluated in this study to correlate surface strain measurements and acoustic emission measurements on carbon-fiber specimens. The AE measurement results show that there is a correlation between the occurrence of AE events and the timing of complete specimen failure. DIC with a high-speed stereo camera system is also adopted to extract the change in the resonance frequencies and displacement and strain mode shapes of the specimen during experiments in cyclic loading.

     
    more » « less