Floor isolation systems (FISs) are used to mitigate earthquake‐induced damage to sensitive building contents. Dynamic coupling between the FIS and primary structure (PS) may be nonnegligible or even advantageous when strong nonlinearities are present under large isolator displacements. This study investigates the influence of dynamic coupling between the PS and FIS in the presence of nonsmooth (impact‐like) nonlinearity in the FIS under intense earthquakes. Using component mode analysis, a nonlinear reduced order model of the combined FIS–PS system is developed by coupling a condensed model of the linear PS to the nonlinear FIS. A bilinear Hertz‐type contact model is assumed for the FIS, with the gap and the impact stiffness and damping providing parametric variation. The performance of the FIS–PS system is quantified through a multiobjective, risk‐based design criterion considering both the total acceleration sustained by the isolated mass under a service‐level earthquake and the interstory drift under a maximum considered earthquake. The results of a parametric study shed light on understanding the valid range that the decoupled approach can be reliably applied for nonlinear FISs experiencing impacts. It is also shown that the nonlinear FIS can be tuned in such a way to mitigate seismic responses of themore »
Design and Assessment of Innovative Dual-Mode Rolling Isolation Systems
Loss of operation or devastating damage to buildings and industrial structures, as well as equipment housed in them, has been observed due to earthquake-induced vibrations. A common source of operational downtime is due to the performance reduction of vital equipment, which are sensitive to the total transmitted acceleration. A well-known method of protecting such equipment is seismic isolation of the equipment itself (or a group of equipment), as opposed to the entire structure due to the lower cost of implementation. The first objective of this dissertation is assessing a rolling isolation system (RIS) based on existing design guidelines for telecommunications equipment. A discrepancy is observed between the required response spectrum (RRS) and the one and only accelerogram recommended in the guideline. Several filters are developed to generate synthetic accelerograms that are compatible with the RRS. The generated accelerograms are used for probabilistic assessment of a RIS that is acceptable per the guideline. This assessment reveals large failure probability due to displacement demands in excess of the displacement capacity of the RIS. When the displacement demands on an isolation system are in excess of its capacity, impacts result in spikes in transmitted acceleration. Therefore, the second objective of this dissertation is more »
- Award ID(s):
- 1663376
- Publication Date:
- NSF-PAR ID:
- 10272978
- Journal Name:
- The University of Oklahoma Libraries
- ISSN:
- 0270-6989
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Floor isolation systems (FISs) are used to mitigate earthquake-induced damage to sensitive building contents and equipment. Traditionally, the isolated floor and the primary building structure (PS) are analyzed independently, assuming the PS response is uncoupled from the FIS response. Dynamic coupling may be non-negligible when nonlinearities are present under large deflections at strong disturbance levels. This study investigates a multi-functional FIS that functions primarily as an isolator (i.e., attenuating total acceleration sustained by the isolated equipment) at low-to-moderate disturbance levels, and then passively adapt under strong disturbances to function as a nonlinear (vibro-impact) dynamic vibration absorbers to protect the PS (i.e., reducing inter-story drifts). The FIS, therefore, functions as a dual-model vibration isolator/absorber system, with displacement dependent response adaptation. A scale experimental model—consisting of a three-story frame and an isolated mass—is used to demonstrate and evaluate the design methodology via shake table tests. The properties of the 3D-printed rolling pendulum (RP) bearing, the seismic gap, and the impact mechanism are optimized to achieve the desired dual-mode performance. A suite of four ground motions with varying spectral qualities are used, and their amplitudes are scaled to represent various hazards—from service level earthquake (SLE), to design basis earthquake (DBE), and even maximummore »
-
Nonstructural components within mission-critical facilities such as hospitals and telecommunication facilities are vital to a community's resilience when subjected to a seismic event. Building contents like medical and computer equipment are critical for the response and recovery process following an earthquake. A solution to protecting these systems from seismic hazards is base isolation. Base isolation systems are designed to decouple an entire building structure from destructive ground motions. For other buildings not fitted with base isolation, a practical and economical solution to protect vital building contents from earthquake-induced floor motion is to isolate individual equipment using, for example, rolling-type isolation systems (RISs). RISs are a relatively new innovation for protecting equipment. These systems function as a pendulum-like mechanism to convert horizontal motion into vertical motion. An accompanying change in potential energy creates a restoring force related to the slope of the rolling surface. This study seeks to evaluate the seismic hazard mitigation performance of RISs, as well as propose and test a novel double RIS. A physics-based mathematical model was developed for a single RIS via Lagrange's equation adhering to the kinetic constraint of rolling without slipping. The mathematical model for the single RIS was used to predict the responsemore »
-
Building contents and nonstructural components are known to be vulnerable during seismic events. Of particular concern is computer and network equipment that is critical in the post-earthquake recovery process. A solution for mitigating the seismic hazard to such systems is rolling-type isolation systems (RISs), but the characterization of RISs with realistic loading conditions and system setups is not well documented. An experimental parametric case study was performed varying the mass eccentricity, the number of cabinets, and the damping to simulate in-service conditions. A series of free response tests was performed using an abrupt shake table displacement (pulse) along with forced response tests utilizing the VERTEQ-II Zone-4 waveform. An array or string potentiometers and accelerometers measured the longitudinal, transverse, and rotational responses of the systems. Supplementally damped systems were found to have increased rotations when a mass eccentricity was present. The increase in system size and mass reduced the overall rotations due to an increased restoring moment arm and higher mass moment of inertia. Increased damping decreased the displacement demand on the isolator but increased the overall accelerations slightly. However, the systems without the supplemental damping had such large displacements that impacts were experienced causing excessively high accelerations. Durability was anmore »
-
Seismic isolation systems for buildings are generally selected to achieve higher seismic performance objectives, such as continued operation or immediate occupancy following a design earthquake event. However, recent large scale tests have suggested that these objectives may be compromised if the shaking includes large vertical acceleration components that are damaging to the nonstructural components and contents. Some research has been conducted to develop three dimensional isolation systems that can isolate the structure from both the horizontal and vertical components of ground motion. In several cases, systems have been proposed without much justification of the target design parameters. Rocking has been noted as a potential concern for structures with 3D isolation systems, and complex systems have been proposed to control the rocking. In this study, the fundamental dynamic response of structures with 3D isolation systems is explored. Target horizontal and vertical spectra for a representative strong motion site were developed based on NEHRP recommendations, and horizontal and vertical ground motions were selected that best fit the target spectra when the same amplitude scale factor was applied to all three motion components. Using a simple model of a rigid block resting on linear isolation bearings, the following aspects are evaluated for amore »