skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying Ocean Swell Generation Events from Ross Ice Shelf Seismic Data
Abstract Strong surface winds under extratropical cyclones exert intense surface stresses on the ocean that lead to upper-ocean mixing, intensified heat fluxes, and the generation of waves, that, over time, lead to swell waves (longer than 10-s period) that travel long distances. Because low-frequency swell propagates faster than high-frequency swell, the frequency dependence of swell arrival times at a measurement site can be used to infer the distance and time that the wave has traveled from its generation site. This study presents a methodology that employs spectrograms of ocean swell from point observations on the Ross Ice Shelf (RIS) to verify the position of high wind speed areas over the Southern Ocean, and therefore of extratropical cyclones. The focus here is on the implementation and robustness of the methodology in order to lay the groundwork for future broad application to verify Southern Ocean storm positions from atmospheric reanalysis data. The method developed here combines linear swell dispersion with a parametric wave model to construct a time- and frequency-dependent model of the dispersed swell arrivals in spectrograms of seismic observations on the RIS. A two-step optimization procedure (deep learning) of gradient descent and Monte Carlo sampling allows detailed estimates of the parameter distributions, with robust estimates of swell origins. Median uncertainties of swell source locations are 110 km in radial distance and 2 h in time. The uncertainties are derived from RIS observations and the model, rather than an assumed distribution. This method is an example of supervised machine learning informed by physical first principles in order to facilitate parameter interpretation in the physical domain.  more » « less
Award ID(s):
1744856 1246151 1658001
PAR ID:
10124135
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
36
Issue:
11
ISSN:
0739-0572
Page Range / eLocation ID:
p. 2171-2189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A part of the Southern Ocean, the Ross Sea, together with the Ross Ice Shelf and the atmosphere over the region represent a coupled system with respect to the low-frequency (with the periods longer than 1 hour) wave processes observed in the three media. We study interconnections between them using a unique combination of geophysical sensors: hydrophones measuring pressure variations on the bottom of the open ocean, seismographs measuring vertical displacements of the surface of the Ross Ice Shelf, and the Jang Bogo Dynasonde system measuring wave parameters at the altitudes of the lower thermosphere. Analysis of a year-long data sets from Ross Ice Shelf-based instruments reveals presence in their average power spectra of the peaks in the 2-11 hours period range that may be associated with the low-order resonance vibrations of the system. More harmonics of the 24 hour tide (seven) are detected by the RIS seismographs compared to the sea floor sensor (where only two are clearly visible). This may be a consequence of the RIS resonance-related broadband amplification effect predicted by our model. There are several peaks in the RIS vibration spectrum (T = 8.37, 8.23, 6.3 and 6.12 hours) that are not detected by the hydrophone and may be directly related to RIS resonances. The prominent T = 25.81 hour peak is a likely candidate for the sub-inertial RIS resonance. The periods of lower RIS resonance modes predicted by our simple model and the observed spectral peaks are in the same general band. This is the first direct observation of the resonance effects in vibrations of the Ross Ice Shelf. Our results demonstrate the key role of the resonances of the Ross Ice Shelf in maintaining the wave activity in the entire coupled system. We suggest that the ocean tide is a major source of excitation of the Ross Ice Shelf’s resonances. The ice shelf vibrations may also be supported by the energy transfer from wind, swell, and infragravity wave energy that couples with the ice shelf. Overlapping 6-month-long data sets reveal a significant linear correlation between the spectra of the vertical shifts of the Ross Ice Shelf and of the thermospheric waves with the periods of about 2.1, 3.7, and 11.1 hours. This result corroborates earlier lidar observations of persistent atmospheric wave activity over McMurdo. We propose a theory that quantifies the nexus between the ocean tide and the resonance vibrations of the Ross Ice Shelf. It complements the theoretical model of the process of generating the atmospheric waves by the resonance vibrations of the Ross Ice Shelf published by us earlier. 
    more » « less
  2. Abstract We present estimates of gravity wave momentum fluxes calculated from Project Loon superpressure balloon data collected between 2013 and 2021. In total, we analyzed more than 5,000 days of data from balloon flights in the lower stratosphere, flights often over regions or during times of the year without any previous in‐situ observations of gravity waves. Maps of mean momentum fluxes show significant regional variability; we analyze that variability using the statistics of the momentum flux probability distributions for six regions: the Southern Ocean, the Indian Ocean, and the tropical and extratropical Pacific and Atlantic Oceans. The probability distributions are all approximately log‐normal, and using their geometric means and geometric standard deviations we statistically explain the sign and magnitude of regional mean and 99th percentile zonal momentum fluxes and regional momentum flux intermittencies. We study the dependence of the zonal momentum flux on the background zonal wind and argue that the increase of the momentum flux with the wind speed over the Southern Ocean is likely due to a varying combination of both wave sources and filtering. Finally, we show that as the magnitude of the momentum flux increases, the fractional contributions by high‐frequency waves increases, waves which need to be parameterized in large‐scale models of the atmosphere. In particular, the near‐universality of the log‐normal momentum flux probability distribution, and the relation of its statistical moments to the mean momentum flux and intermittency, offer useful checks when evaluating parameterized or resolved gravity waves in models. 
    more » « less
  3. Abstract Mixing processes in the upper ocean play a key role in transferring heat, momentum, and matter in the ocean. These mixing processes are significantly enhanced by wave‐driven Langmuir turbulence (LT). Based on a paired analysis of observations and simulations, this study investigates wind fetch and direction effects on LT at a coastal site south of the island Martha’s Vineyard (MA, USA). Our results demonstrate that LT is strongly influenced by wind fetch and direction in coastal oceans, both of which contribute to controlling turbulent coastal transport processes. For northerly offshore winds, land limits the wind fetch and wave development, whereas southerly winds are associated with practically infinite fetch. Observed and simulated two‐dimensional wave height spectra reveal persistent southerly swell and substantially more developed wind‐driven waves from the south. For oblique offshore winds, waves develop more strongly in the alongshore direction with less limited fetch, resulting in significant wind and wave misalignments. Observations of coherent near‐surface crosswind velocities indicate that LT is only present for sufficiently developed waves. The fetch‐limited northerly winds inhibit wave developments and the formation of LT. In addition to limited fetch, strong wind–wave misalignments prevent LT development. Although energetic and persistent, swell waves do not substantially influence LT activity during the observation period because these relatively long swell waves are associated with small Stokes drift shear. These observational results agree well with turbulence‐resolving large eddy simulations (LESs) based on the wave‐averaged Navier–Stokes equation, validating the LES approach to coastal LT in the complex wind and wave conditions. 
    more » « less
  4. null (Ed.)
    Abstract Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude variability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate landward from the ice front at close to shallow-water gravity-wave speeds (~70 m s −1 ). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ~3 km s −1 . Flexural-gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity-wave excitation. 
    more » « less
  5. ABSTRACT. Ice shelves play an important role in buttressing land ice from reaching the sea, thus restrain- ing the rate of grounded ice loss. Long-period gravity-wave impacts excite vibrations in ice shelves that can expand pre-existing fractures and trigger iceberg calving. To investigate the spatial amplitude vari- ability and propagation characteristics of these vibrations, a 34-station broadband seismic array was deployed on the Ross Ice Shelf (RIS) from November 2014 to November 2016. Two types of ice-shelf plate waves were identified with beamforming: flexural-gravity waves and extensional Lamb waves. Below 20 mHz, flexural-gravity waves dominate coherent signals across the array and propagate land- ward from the ice front at close to shallow-water gravity-wave speeds (∼70 m s−1). In the 20–100 mHz band, extensional Lamb waves dominate and propagate at phase speeds ∼3 km s−1. Flexural- gravity and extensional Lamb waves were also observed by a 5-station broadband seismic array deployed on the Pine Island Glacier (PIG) ice shelf from January 2012 to December 2013, with flexural wave energy, also detected at the PIG in the 20–100 mHz band. Considering the ubiquitous presence of storm activity in the Southern Ocean and the similar observations at both the RIS and the PIG ice shelves, it is likely that most, if not all, West Antarctic ice shelves are subjected to similar gravity- wave excitation. 
    more » « less