Abstract Gravity waves dispersing upward through the tropical stratosphere during opposing phases of the QBO are investigated using ERA5 data for 1979–2019. Log–log plots of two-sided zonal wavenumber–frequency spectra of vertical velocity, and cospectra representing the vertical flux of zonal momentum in the tropical lower stratosphere, exhibit distinctive gravity wave signatures across space and time scales ranging over two orders of magnitude. Spectra of the vertical flux of momentum are indicative of a strong dissipation of westward-propagating gravity waves during the easterly phase and vice versa. This selective “wind filtering” of the waves as they disperse upward imprints the vertical structure of the zonal flow on the resolved wave spectra, characteristic of (re)analysis and/or free-running models. The three-dimensional structures of the gravity waves are documented in composites of the vertical velocity field relative to grid-resolved tropospheric downwelling events at individual reference grid points along the equator. In the absence of a background zonal flow, the waves radiate outward and upward from their respective reference grid points in concentric rings. When a zonal flow is present, the rings are displaced downstream relative to the source and they are amplified upstream of the source and attenuated downstream of it, such that instead of rings, they assume the form of arcs. The log–log spectral representation of wind filtering of equatorial waves by the zonal flow in this paper can be used to diagnose the performance of high-resolution models designed to simulate the circulation of the tropical stratosphere.
more »
« less
Gravity Wave Momentum Fluxes Estimated From Project Loon Balloon Data
Abstract We present estimates of gravity wave momentum fluxes calculated from Project Loon superpressure balloon data collected between 2013 and 2021. In total, we analyzed more than 5,000 days of data from balloon flights in the lower stratosphere, flights often over regions or during times of the year without any previous in‐situ observations of gravity waves. Maps of mean momentum fluxes show significant regional variability; we analyze that variability using the statistics of the momentum flux probability distributions for six regions: the Southern Ocean, the Indian Ocean, and the tropical and extratropical Pacific and Atlantic Oceans. The probability distributions are all approximately log‐normal, and using their geometric means and geometric standard deviations we statistically explain the sign and magnitude of regional mean and 99th percentile zonal momentum fluxes and regional momentum flux intermittencies. We study the dependence of the zonal momentum flux on the background zonal wind and argue that the increase of the momentum flux with the wind speed over the Southern Ocean is likely due to a varying combination of both wave sources and filtering. Finally, we show that as the magnitude of the momentum flux increases, the fractional contributions by high‐frequency waves increases, waves which need to be parameterized in large‐scale models of the atmosphere. In particular, the near‐universality of the log‐normal momentum flux probability distribution, and the relation of its statistical moments to the mean momentum flux and intermittency, offer useful checks when evaluating parameterized or resolved gravity waves in models.
more »
« less
- Award ID(s):
- 2004492
- PAR ID:
- 10590385
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 129
- Issue:
- 5
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract A companion paper by Lund et al. (2020) employed a compressible model to describe the evolution of mountain waves arising due to increasing flow with time over the Southern Andes, their breaking, secondary gravity waves and acoustic waves arising from these dynamics, and their local responses. This paper describes the mountain wave, secondary gravity wave, and acoustic wave vertical fluxes of horizontal momentum, and the local and large-scale three-dimensional responses to gravity breaking and wave/mean-flow interactions accompanying this event. Mountain wave and secondary gravity wave momentum fluxes and deposition vary strongly in space and time due to variable large-scale winds and spatially-localized mountain wave and secondary gravity wave responses. Mountain wave instabilities accompanying breaking induce strong, local, largely-zonal forcing. Secondary gravity waves arising from mountain wave breaking also interact strongly with large-scale winds at altitudes above ~80km. Together, these mountain wave and secondary gravity wave interactions reveal systematic gravity-wave/mean-flow interactions having implications for both mean and tidal forcing and feedbacks. Acoustic waves likewise achieve large momentum fluxes, but typically imply significant responses only at much higher altitudes.more » « less
-
Balloon‐Borne Observations of Short Vertical Wavelength Gravity Waves and Interaction With QBO WindsAbstract The quasi‐biennial oscillation (QBO), a ubiquitous feature of the zonal mean zonal winds in the equatorial lower stratosphere, is forced by selective dissipation of atmospheric waves that range in periods from days to hours. However, QBO circulations in numerical models tend to be weak compared with observations, probably because of limited vertical resolution that cannot adequately resolve gravity waves and the height range over which they dissipate. Observations are required to help quantify wave effects. The passage of a superpressure balloon (SPB) near a radiosonde launch site in the equatorial Western Pacific during the transition from the eastward to westward phase of the QBO at 20 km permits a coordinated study of the intrinsic frequencies and vertical structures of two inertia‐gravity wave packets with periods near 1 day and 3 days, respectively. Both waves have large horizontal wavelengths of about 970 and 5,500 km. The complementary nature of the observations provided information on their momentum fluxes and the evolution of the waves in the vertical. The near 1 day westward propagating wave has a critical level near 20 km, while the eastward propagating 3‐day wave is able to propagate through to heights near 30 km before dissipation. Estimates of the forcing provided by the momentum flux convergence, taking into account the duration and scale of the forcing, suggests zonal force of about 0.3–0.4 m s−1 day−1for the 1‐day wave and about 0.4–0.6 m s−1 day−1for the 3‐day wave, which acts for several days.more » « less
-
null (Ed.)Diurnal variations of gravity waves over the Tibetan Plateau (TP) in summer 2015 were investigated based on high-resolution downscaled simulations from WRF-EnKF (Weather Research and Forecasting model and an ensemble Kalman filter) regional reanalysis data with particular emphasis on wave source, wave momentum fluxes and wave energies. Strong diurnal precipitations, which mainly happen along the south slope of the TP, tend to excite upward-propagating gravity waves. The spatial and temporal distributions of the momentum fluxes of small-scale (10–200 km) and meso-scale (200–500 km) gravity waves agree well with the diurnal precipitation distributions. The power spectra of momentum fluxes also show that the small- and meso-scale atmospheric processes become important during the period of the strongest rainfall. Eastward momentum fluxes and northward momentum fluxes are dominant. Wave energies are described in terms of kinetic energy (KE), potential energy (PE) and vertical fluctuation energy (VE). The diurnal variation and spatial distribution of VE in the lower stratosphere correspond to the diurnal rainfall in the troposphere.more » « less
-
Abstract The sinking of carbon fixed via net primary production (NPP) into the ocean interior is an important part of marine biogeochemical cycles. NPP measurements follow a log‐normal probability distribution, meaning NPP variations can be simply described by two parameters despite NPP's complexity. By analyzing a global database of open ocean particle fluxes, we show that this log‐normal probability distribution propagates into the variations of near‐seafloor fluxes of particulate organic carbon (POC), calcium carbonate, and opal. Deep‐sea particle fluxes at subtropical and temperate time‐series sites follow the same log‐normal probability distribution, strongly suggesting the log‐normal description is robust and applies on multiple scales. This log‐normality implies that 29% of the highest measurements are responsible for 71% of the total near‐seafloor POC flux. We discuss possible causes for the dampening of variability from NPP to deep‐sea POC flux, and present an updated relationship predicting POC flux from mineral flux and depth.more » « less