skip to main content


Title: Electrical control of interlayer exciton dynamics in atomically thin heterostructures

A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides (TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. By employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate that neutral interlayer excitons can propagate across the entire sample and that their propagation can be controlled by excitation power and gate electrodes. We also use devices with ohmic contacts to facilitate the drift motion of charged interlayer excitons. The electrical generation and control of excitons provide a route for achieving quantum manipulation of bosonic composite particles with complete electrical tunability.

 
more » « less
Award ID(s):
1734011
NSF-PAR ID:
10124174
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
366
Issue:
6467
ISSN:
0036-8075
Page Range / eLocation ID:
p. 870-875
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ever since its inception, coherent excited states of semiconductors have been the focus of semiconductor materials research to evolve into a vibrant field of low-dimensional solid-state physics. The field is gaining new momentum these days due to emerging transdimensional semiconductors such as van der Waals bound layers of transition metal dichalcogenides (TMDs) of controlled thickness. Here, we develop the theory of magnetic-field-induced Wigner crystallization for charged interlayer excitons (CIE) discovered recently in TMD heterobilayers. We derive the ratio of the potential interaction energy to the kinetic energy for the many-particle CIE system in the perpendicular magnetostatic field of an arbitrary strength and predict the crystallization effect in the strong field regime. We show that magnetic-field-induced Wigner crystallization and melting of CIEs can be observed in magneto-photoluminescence experiments with TMD bilayers of systematically varied electron-hole doping concentrations. Our results advance the capabilities of this new generation of transdimensional quantum materials.

     
    more » « less
  2. Abstract

    Excitons are elementary optical excitation in semiconductors. The ability to manipulate and transport these quasiparticles would enable excitonic circuits and devices for quantum photonic technologies. Recently, interlayer excitons in 2D semiconductors have emerged as a promising candidate for engineering excitonic devices due to their long lifetime, large exciton binding energy, and gate tunability. However, the charge-neutral nature of the excitons leads to weak response to the in-plane electric field and thus inhibits transport beyond the diffusion length. Here, we demonstrate the directional transport of interlayer excitons in bilayer WSe2driven by the propagating potential traps induced by surface acoustic waves (SAW). We show that at 100 K, the SAW-driven excitonic transport is activated above a threshold acoustic power and reaches 20 μm, a distance at least ten times longer than the diffusion length and only limited by the device size. Temperature-dependent measurement reveals the transition from the diffusion-limited regime at low temperature to the acoustic field-driven regime at elevated temperature. Our work shows that acoustic waves are an effective, contact-free means to control exciton dynamics and transport, promising for realizing 2D materials-based excitonic devices such as exciton transistors, switches, and transducers up to room temperature.

     
    more » « less
  3. Abstract

    Improving the quantum coherence of solid-state systems is a decisive factor in realizing solid-state quantum technologies. The key to optimize quantum coherence lies in reducing the detrimental influence of noise sources such as spin noise and charge noise. Here we demonstrate that we can utilize highly-excited Rydberg excitons to neutralize charged impurities in the semiconductor Cuprous Oxide - an effect we call purification. Purification reduces detrimental electrical stray fields drastically. We observe that the absorption of the purified crystal increases by up to 25% and that the purification effect is long-lived and may persist for hundreds of microseconds or even longer. We investigate the interaction between Rydberg excitons and impurities and find that it is long-ranged and based on charge-induced dipole interactions. Using a time-resolved pump-probe technique, we can discriminate purification from Rydberg blockade, which has been a long-standing goal in excitonic Rydberg systems.

     
    more » « less
  4. Strong interactions between excitons are a characteristic feature of two-dimensional (2D) semiconductors, determining important excitonic properties, such as exciton lifetime, coherence, and photon-emission efficiency. Rhenium disulfide (ReS2), a member of the 2D transition-metal dichalcogenide (TMD) family, has recently attracted great attention due to its unique excitons that exhibit excellent polarization selectivity and coherence features. However, an in-depth understanding of exciton-exciton interactions in ReS2 is still lacking. Here we used ultrafast pump-probe spectroscopy to study exciton-exciton interactions in monolayer (1L), bilayer (2L), and triple layer ReS2. We directly measure the rate of exciton-exciton annihilation, a representative Auger-type interaction between excitons. It decreases with increasing layer number, as observed in other 2D TMDs. However, while other TMDs exhibit a sharp weakening of exciton-exciton annihilation between 1L and 2L, such behavior was not observed in ReS2. We attribute this distinct feature in ReS2 to the relatively weak interlayer coupling, which prohibits a substantial change in the electronic structure when the thickness varies. This work not only highlights the unique excitonic properties of ReS2 but also provides novel insight into the thickness dependence of exciton-exciton interactions in 2D systems. 
    more » « less
  5. Abstract

    Monolayer ternary tellurides based on alloying different transition metal dichalcogenides (TMDs) can result in new two‐dimensional (2D) materials ranging from semiconductors to metals and superconductors with tunable optical and electrical properties. Semiconducting WTe2xS2(1‐x)monolayer possesses two inequivalent valleys in the Brillouin zone, each valley coupling selectively with circularly polarized light (CPL). The degree of valley polarization (DVP) under the excitation of CPL represents the purity of valley polarized photoluminescence (PL), a critical parameter for opto‐valleytronic applications. Here, new strategies to efficiently tailor the valley‐polarized PL from semiconducting monolayer WTe2xS2(1‐x)at room temperature (RT) through alloying and back‐gating are presented. The DVP at RT is found to increase drastically from < 5% in WS2to 40% in WTe0.12S1.88by Te‐alloying to enhance the spin‐orbit coupling. Further enhancement and control of the DVP from 40% up to 75% is demonstrated by electrostatically doping the monolayer WTe0.12S1.88via metallic 1T′‐WTe2electrodes, where the use of 1T′‐WTe2substantially lowers the Schottky barrier height (SBH) and weakens the Fermi‐level pinning of the electrical contacts. The demonstration of drastically enhanced DVP and electrical tunability in the valley‐polarized emission from 1T′‐WTe2/WTe0.12S1.88heterostructures paves new pathways towards harnessing valley excitons in ultrathin valleytronic devices for RT applications.

     
    more » « less