Title: Humans modulate arm stiffness to facilitate motor communication during overground physical human-robot interaction
Abstract Humans can physically interact with other humans adeptly. Some overground interaction tasks, such as guiding a partner across a room, occur without visual and verbal communication, which suggests that the information exchanges occur through sensing movements and forces. To understand the process of motor communication during overground physical interaction, we hypothesized that humans modulate the mechanical properties of their arms for increased awareness and sensitivity to ongoing interaction. For this, we used an overground interactive robot to guide a human partner across one of three randomly chosen paths while occasionally providing force perturbations to measure the arm stiffness. We observed that the arm stiffness was lower at instants when the robot’s upcoming trajectory was unknown compared to instants when it was predicable - the first evidence of arm stiffness modulation for better motor communication during overground physical interaction. more »« less
Many anticipated physical human-robot interaction (pHRI) applications in the near future are overground tasks such as walking assistance. For investigating the biomechanics of human movement during pHRI, this work presents Ophrie, a novel interactive robot dedicated for physical interaction tasks with a human in overground settings. Unique design requirements for pHRI were considered in implementing the one-arm mobile robot, such as the low output impedance and the ability to apply small interaction forces. The robot can measure the human arm stiffness, an important physical quantity that can reveal human biomechanics during overground pHRI, while the human walks alongside the robot. This robot is anticipated to enable novel pHRI experiments and advance our understanding of intuitive and effective overground pHRI.
Rashid, Fazlur; Burns, Devin; Song, Yun Seong
(, 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC))
Effective physical human-robot interaction (pHRI) depends on how humans can communicate their intentions for movement with others. While it is speculated that small interaction forces contain significant information to convey the specific movement intention of physical humanhuman interaction (pHHI), the underlying mechanism for humans to infer intention from such small forces is largely unknown. The hypothesis in this work is that the sensitivity to a small interaction force applied at the hand is affected by the movement of the arm that is affected by the arm stiffness. For this, a haptic robot was used to provide the endpoint interaction forces to the arm of seated human participants. They were asked to determine one of the four directions of the applied robot interaction force without visual feedback. Variations of levels of interaction force as well as arm muscle contraction were applied. The results imply that human’s ability to identify and respond to the correct direction of small interaction forces was lower when the alignment of human arm movement with respect to the force direction was higher. In addition, the sensitivity to the direction of the small interaction force was high when the arm stiffness was low. It is also speculated that humans lower their arm stiffness to be more sensitive to smaller interaction forces. These results will help develop human-like pHRI systems for various applications.
Küçüktabak, Emek_Barış; Kim, Sangjoon_J; Wen, Yue; Lynch, Kevin; Pons, Jose_L
(, Journal of NeuroEngineering and Rehabilitation)
Abstract BackgroundHuman-human (HH) interaction mediated by machines (e.g., robots or passive sensorized devices), which we call human-machine-human (HMH) interaction, has been studied with increasing interest in the last decade. The use of machines allows the implementation of different forms of audiovisual and/or physical interaction in dyadic tasks. HMH interaction between two partners can improve the dyad’s ability to accomplish a joint motor task (task performance) beyond either partner’s ability to perform the task solo. It can also be used to more efficiently train an individual to improve their solo task performance (individual motor learning). We review recent research on the impact of HMH interaction on task performance and individual motor learning in the context of motor control and rehabilitation, and we propose future research directions in this area. MethodsA systematic search was performed on the Scopus, IEEE Xplore, and PubMed databases. The search query was designed to find studies that involve HMH interaction in motor control and rehabilitation settings. Studies that do not investigate the effect of changing the interaction conditions were filtered out. Thirty-one studies met our inclusion criteria and were used in the qualitative synthesis. ResultsStudies are analyzed based on their results related to the effects of interaction type (e.g., audiovisual communication and/or physical interaction), interaction mode (collaborative, cooperative, co-active, and competitive), and partner characteristics. Visuo-physical interaction generally results in better dyadic task performance than visual interaction alone. In cases where the physical interaction between humans is described by a spring, there are conflicting results as to the effect of the stiffness of the spring. In terms of partner characteristics, having a more skilled partner improves dyadic task performance more than having a less skilled partner. However, conflicting results were observed in terms of individual motor learning. ConclusionsAlthough it is difficult to draw clear conclusions as to which interaction type, mode, or partner characteristic may lead to optimal task performance or individual motor learning, these results show the possibility for improved outcomes through HMH interaction. Future work that focuses on selecting the optimal personalized interaction conditions and exploring their impact on rehabilitation settings may facilitate the transition of HMH training protocols to clinical implementations.
Wu, Mengnan; Drnach, Luke; Bong, Sistania M.; Song, Yun Seong; Ting, Lena H.
(, Frontiers in Robotics and AI)
Principles from human-human physical interaction may be necessary to design more intuitive and seamless robotic devices to aid human movement. Previous studies have shown that light touch can aid balance and that haptic communication can improve performance of physical tasks, but the effects of touch between two humans on walking balance has not been previously characterized. This study examines physical interaction between two persons when one person aids another in performing a beam-walking task. 12 pairs of healthy young adults held a force sensor with one hand while one person walked on a narrow balance beam (2 cm wide x 3.7 m long) and the other person walked overground by their side. We compare balance performance during partnered vs. solo beam-walking to examine the effects of haptic interaction, and we compare hand interaction mechanics during partnered beam-walking vs. overground walking to examine how the interaction aided balance. While holding the hand of a partner, participants were able to walk further on the beam without falling, reduce lateral sway, and decrease angular momentum in the frontal plane. We measured small hand force magnitudes (mean of 2.2 N laterally and 3.4 N vertically) that created opposing torque components about the beam axis and calculated the interaction torque, the overlapping opposing torque that does not contribute to motion of the beam-walker’s body. We found higher interaction torque magnitudes during partnered beam-walking vs . partnered overground walking, and correlation between interaction torque magnitude and reductions in lateral sway. To gain insight into feasible controller designs to emulate human-human physical interactions for aiding walking balance, we modeled the relationship between each torque component and motion of the beam-walker’s body as a mass-spring-damper system. Our model results show opposite types of mechanical elements (active vs . passive) for the two torque components. Our results demonstrate that hand interactions aid balance during partnered beam-walking by creating opposing torques that primarily serve haptic communication, and our model of the torques suggest control parameters for implementing human-human balance aid in human-robot interactions.
Abstract Understanding the human motor control strategy during physical interaction tasks is crucial for developing future robots for physical human–robot interaction (pHRI). In physical human–human interaction (pHHI), small interaction forces are known to convey their intent between the partners for effective motor communication. The aim of this work is to investigate what affects the human’s sensitivity to the externally applied interaction forces. The hypothesis is that one way the small interaction forces are sensed is through the movement of the arm and the resulting proprioceptive signals. A pHRI setup was used to provide small interaction forces to the hand of seated participants in one of four directions, while the participants were asked to identify the direction of the push while blindfolded. The result shows that participants’ ability to correctly report the direction of the interaction force was lower with low interaction force as well as with high muscle contraction. The sensitivity to the interaction force direction increased with the radial displacement of the participant’s hand from the initial position: the further they moved the more correct their responses were. It was also observed that the estimated stiffness of the arm varies with the level of muscle contraction and robot interaction force.
Regmi, Sambad, Burns, Devin, and Song, Yun Seong. Humans modulate arm stiffness to facilitate motor communication during overground physical human-robot interaction. Retrieved from https://par.nsf.gov/biblio/10437403. Scientific Reports 12.1 Web. doi:10.1038/s41598-022-23496-z.
Regmi, Sambad, Burns, Devin, & Song, Yun Seong. Humans modulate arm stiffness to facilitate motor communication during overground physical human-robot interaction. Scientific Reports, 12 (1). Retrieved from https://par.nsf.gov/biblio/10437403. https://doi.org/10.1038/s41598-022-23496-z
@article{osti_10437403,
place = {Country unknown/Code not available},
title = {Humans modulate arm stiffness to facilitate motor communication during overground physical human-robot interaction},
url = {https://par.nsf.gov/biblio/10437403},
DOI = {10.1038/s41598-022-23496-z},
abstractNote = {Abstract Humans can physically interact with other humans adeptly. Some overground interaction tasks, such as guiding a partner across a room, occur without visual and verbal communication, which suggests that the information exchanges occur through sensing movements and forces. To understand the process of motor communication during overground physical interaction, we hypothesized that humans modulate the mechanical properties of their arms for increased awareness and sensitivity to ongoing interaction. For this, we used an overground interactive robot to guide a human partner across one of three randomly chosen paths while occasionally providing force perturbations to measure the arm stiffness. We observed that the arm stiffness was lower at instants when the robot’s upcoming trajectory was unknown compared to instants when it was predicable - the first evidence of arm stiffness modulation for better motor communication during overground physical interaction.},
journal = {Scientific Reports},
volume = {12},
number = {1},
author = {Regmi, Sambad and Burns, Devin and Song, Yun Seong},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.