Consider a one-parameter family of smooth, irreducible, projective curves of genus $g\ge 2$ defined over a number field. Each fiber contains at most finitely many rational points by the Mordell conjecture, a theorem of Faltings. We show that the number of rational points is bounded only in terms of the family and the Mordell–Weil rank of the fiber’s Jacobian. Our proof uses Vojta’s approach to the Mordell Conjecture furnished with a height inequality due to the 2nd- and 3rd-named authors. In addition we obtain uniform bounds for the number of torsion points in the Jacobian that lie in each fiber of the family.
more » « less- PAR ID:
- 10124244
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The Chabauty–Kim method allows one to find rational points on curves under certain technical conditions, generalising Chabauty’s proof of the Mordell conjecture for curves with Mordell–Weil rank less than their genus. We show how the Chabauty–Kim method, when these technical conditions are satisfied in depth 2, may be applied to bound the number of rational points on a curve of higher rank. This provides a non-abelian generalisation of Coleman’s effective Chabauty theorem.more » « less
-
Let K be a number field, and let E/K be an elliptic curve over K. The Mordell–Weil theorem asserts that the K-rational points E(K) of E form a finitely generated abelian group. In this work, we complete the classification of the finite groups which appear as the torsion subgroup of E ( K ) for K a cubic number field. To do so, we determine the cubic points on the modular curves X1(N) for N = 21,22,24,25,26,28,30,32,33,35,36,39,45,65,121. As part of our analysis, we determine the complete lists of N for which J0(N), J1(N), and J1(2,2N) have rank 0. We also provide evidence to a generalized version of a conjecture of Conrad, Edixhoven, and Stein by proving that the torsion on J1(N)(Q) is generated by Galois-orbits of cusps of X1(N) for N ≤55, N ̸=54.more » « less
-
null (Ed.)Abstract Let $K$ be an algebraically closed field of prime characteristic $p$ , let $X$ be a semiabelian variety defined over a finite subfield of $K$ , let $\unicode[STIX]{x1D6F7}:X\longrightarrow X$ be a regular self-map defined over $K$ , let $V\subset X$ be a subvariety defined over $K$ , and let $\unicode[STIX]{x1D6FC}\in X(K)$ . The dynamical Mordell–Lang conjecture in characteristic $p$ predicts that the set $S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$ is a union of finitely many arithmetic progressions, along with finitely many $p$ -sets, which are sets of the form $\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$ for some $m\in \mathbb{N}$ , some rational numbers $c_{i}$ and some non-negative integers $k_{i}$ . We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $X$ is an algebraic torus, we can prove the conjecture in two cases: either when $\dim (V)\leqslant 2$ , or when no iterate of $\unicode[STIX]{x1D6F7}$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $X$ . We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction.more » « less
-
Abstract We define a notion of height for rational points with respect to a vector bundle on a proper algebraic stack with finite diagonal over a global field, which generalizes the usual notion for rational points on projective varieties. We explain how to compute this height for various stacks of interest (for instance: classifying stacks of finite groups, symmetric products of varieties, moduli stacks of abelian varieties, weighted projective spaces). In many cases, our uniform definition reproduces ways already in use for measuring the complexity of rational points, while in others it is something new. Finally, we formulate a conjecture about the number of rational points of bounded height (in our sense) on a stack $\mathcal {X}$ , which specializes to the Batyrev–Manin conjecture when $\mathcal {X}$ is a scheme and to Malle’s conjecture when $\mathcal {X}$ is the classifying stack of a finite group.more » « less
-
Abstract We complete the computation of all
-rational points on all the 64 maximal Atkin-Lehner quotients$$\mathbb {Q}$$ such that the quotient is hyperelliptic. To achieve this, we use a combination of various methods, namely the classical Chabauty–Coleman, elliptic curve Chabauty, quadratic Chabauty, and the bielliptic quadratic Chabauty method (from a forthcoming preprint of the fourth-named author) combined with the Mordell-Weil sieve. Additionally, for square-free levels$$X_0(N)^*$$ N , we classify all -rational points as cusps, CM points (including their CM field and$$\mathbb {Q}$$ j -invariants) and exceptional ones. We further indicate how to use this to compute the -rational points on all of their modular coverings.$$\mathbb {Q}$$