skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Character bounds for regular semisimple elements and asymptotic results on Thompson’s conjecture
Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p ,  q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups.  more » « less
Award ID(s):
2001349 2200850 1840702
PAR ID:
10429589
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematische Zeitschrift
Volume:
303
Issue:
2
ISSN:
0025-5874
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let $$K$$ be any field, and let $$n$$ be a positive integer. If we denote by $$\xi _{\textrm{SL}_n}\colon \textrm{SL}_n\times \textrm{SL}_n\to \textrm{SL}_n$$ the commutator morphism over $$K$$, then $$\xi _{\textrm{SL}_n}$$ is flat over the complement of the center of $$\textrm{SL}_n$$. 
    more » « less
  2. Abstract We consider a product $$X=E_1\times \cdots \times E_d$$ of elliptic curves over a finite extension $$K$$ of $${\mathbb{Q}}_p$$ with a combination of good or split multiplicative reduction. We assume that at most one of the elliptic curves has supersingular reduction. Under these assumptions, we prove that the Albanese kernel of $$X$$ is the direct sum of a finite group and a divisible group, extending work by Raskind and Spiess to cases that include supersingular phenomena. Our method involves studying the kernel of the cycle map $$CH_0(X)/p^n\rightarrow H^{2d}_{\acute{\textrm{e}}\textrm{t}}(X, \mu _{p^n}^{\otimes d})$$. We give specific criteria that guarantee this map is injective for every $$n\geq 1$$. When all curves have good ordinary reduction, we show that it suffices to extend to a specific finite extension $$L$$ of $$K$$ for these criteria to be satisfied. This extends previous work by Yamazaki and Hiranouchi. 
    more » « less
  3. Abstract For every$$n\ge 2$$ n 2 , thesurface Houghton group$${\mathcal {B}}_n$$ B n is defined as the asymptotically rigid mapping class group of a surface with exactlynends, all of them non-planar. The groups$${\mathcal {B}}_n$$ B n are analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some$${\mathcal {B}}_n$$ B n . As countable mapping class groups of infinite type surfaces, the groups$$\mathcal {B}_n$$ B n lie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that$$\mathcal {B}_n$$ B n is of type$$\text {F}_{n-1}$$ F n - 1 , but not of type$$\text {FP}_{n}$$ FP n , analogous to the braided Houghton groups. 
    more » « less
  4. Abstract Letk(B0) andl(B0) respectively denote the number of ordinary andp-Brauer irreducible characters in the principal blockB0of a finite groupG. We prove that, ifk(B0)−l(B0) = 1, thenl(B0) ≥p− 1 or elsep= 11 andl(B0) = 9. This follows from a more general result that for every finite groupGin which all non-trivialp-elements are conjugate,l(B0) ≥p− 1 or elsep= 11 and$$G/{{\bf{O}}_{{p^\prime }}}(G) \cong C_{11}^2\, \rtimes\,{\rm{SL}}(2,5)$$ G / O p ( G ) C 11 2 SL ( 2 , 5 ) . These results are useful in the study of principal blocks with few characters. We propose that, in every finite groupGof order divisible byp, the number of irreducible Brauer characters in the principalp-block ofGis always at least$$2\sqrt {p - 1} + 1 - {k_p}(G)$$ 2 p 1 + 1 k p ( G ) , wherekp(G) is the number of conjugacy classes ofp-elements ofG. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number ofp-regular classes in finite groups. 
    more » « less
  5. We study random walks on various group extensions. Under certain bounded generation and bounded scaled conditions, we estimate the spectral gap of a random walk on a quasi-random-by-nilpotent group in terms of the spectral gap of its projection to the quasi-random part. We also estimate the spectral gap of a random-walk on a product of two quasi-random groups in terms of the spectral gap of its projections to the given factors. Based on these results, we estimate the spectral gap of a random walk on the F q {\mathbb {F}}_q -points of a perfect algebraic group G {\mathbb {G}} in terms of the spectral gap of its projections to the almost simple factors of the semisimple quotient of G {\mathbb {G}} . These results extend a work of Lindenstrauss and Varjú and an earlier work of the authors. Moreover, using a result of Breuillard and Gamburd, we show that there is an infinite set P \mathcal {P} of primes of density one such that, if k k is a positive integer and G = U ⋊<#comment/> ( SL 2 ) Q m {\mathbb {G}}={\mathbb {U}}\rtimes (\operatorname {SL}_2)_{\mathbb {Q}}^m is a perfect group and U {\mathbb {U}} is a unipotent group, then the family of all the Cayley graphs of G ( Z / ∏<#comment/> i = 1 k p i Z ) {\mathbb {G}}({\mathbb {Z}}/\prod _{i=1}^{k}p_i{\mathbb {Z}}) , p i ∈<#comment/> P p_i\in \mathcal {P} , is a family of expanders. 
    more » « less