Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play—for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines—have received less attention, preventing assessments of these processes’ impacts compared to and combined with coastal erosion. Alaska’s Arctic Coastal Plain (ACP) is ideal for such assessments because of the high-density observations of topography, coastal retreat rates, and permafrost characteristics, and importance to Indigenous communities and oilfield infrastructure. Here, we produce 21st-century projections of Arctic shoreline position that include erosion, permafrost subsidence, and sea-level rise. Focusing on the ACP, we merge 5 m topography, satellite-derived coastal lake depth estimates, and empirical assessments of land subsidence due to permafrost thaw with projections of coastal erosion and sea-level rise for medium and high emissions scenarios from the Intergovernmental Panel on Climate Change’s AR6 Report. We find that by 2100, erosion and inundation will together transform the ACP, leading to 6-8x more land loss than coastal erosion alone and disturbing 8-11x more organic carbon. Without mitigating measures, by 2100, coastal change could damage 40 to 65% of infrastructure in present-day ACP coastal villages and 10 to 20% of oilfield infrastructure. Our findings highlight the risks that compounding climate hazards pose to coastal communities and underscore the need for adaptive planning for Arctic coastlines in the 21st century.
more »
« less
Transforming permafrost coastal systems: Advancing scientific discovery through international collaboration
In the Alaskan Arctic, permafrost coastal systems are eroding at rates more than double those of the past. Rampant environmental change is putting new pressures on Arctic coastal dynamics, with the loss of landscapes, cultural heritage, infrastructure, and communities. Dr Benjamin Jones (Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks) and Professor Hugues Lantuit (Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Germany) are working with scientists and stakeholders from across Arctic nations to develop the Permafrost Coastal Systems Network (PerCS-Net), a forum for reinvigorated research, knowledge integration, and management of environmental change at the fringes of the Arctic.
more »
« less
- PAR ID:
- 10124362
- Date Published:
- Journal Name:
- Research Outreach
- Volume:
- 110
- Page Range / eLocation ID:
- 10 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Long-term permafrost observatories are needed to document and monitor rapid changes to ice-rich permafrost systems (IRPS) in a variety of geological, climatic, and infrastructure settings. As part of the US National Science Foundation’s Navigating the New Arctic (NNA) Program, a new observatory was established near the Deadhorse Airport in the eastern part of the Prudhoe Bay Oilfield (PBO) in 2020–23. The NNA-IRPS project has three main research themes: (1) evolution of and degradation of ground ice within the major surficial-geology units; (2) rapid changes in permafrost, landforms, and vegetation due to infrastructure and climate change; and (3) ecological landscapes associated with the calcareous fluvial deposits of the Central Arctic Coastal Plain.more » « less
-
The cold, wet climate of the Arctic has led to the extraordinary preservation of archaeological sites and materials that offer important contributions to the understanding of our common cultural and ecological history. This potential, however, is quickly disappearing due to climate-related variables, including the intensification of permafrost thaw and coastal erosion, which are damaging and destroying a wide range of cultural and environmental archives around the Arctic. In providing an overview of the most important effects of climate change in this region and on archaeological sites, the authors propose the next generation of research and response strategies, and suggest how to capitalise on existing successful connections among research communities and between researchers and the public.more » « less
-
Lakes are abundant features on coastal plains of the Arctic, providing important fish and wildlife habitat and water supply for villages and industry, but also interact with frozen ground (permafrost) and the carbon it stores. Most of these lakes are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Dating the timing of lake drainage can improve our understanding of the causes and consequences of DTLB formation. This suite of 14C (Carbon-14) ages provides insight into the timing of lake drainage on the North Slope of Alaska across a range of ecosystems and surficial geology types.more » « less
-
Lakes are abundant features on coastal plains of the Arctic, providing important fish and wildlife habitat and water supply for villages and industry, but also interact with frozen ground (permafrost) and the carbon it stores. Most of these lakes are termed "thermokarst" because they form in ice-rich permafrost and gradually expand over time. The dynamic nature of thermokarst lakes also makes them prone to catastrophic drainage and abrupt conversion to wetlands, called drained thermokarst lake basins (DTLBs). Together, thermokarst lakes and DTLBs cover up to 80% of arctic lowland regions, making understanding their response to ongoing climate change essential for coastal plain environmental assessment. Dating the timing of lake drainage can improve our understanding of the causes and consequences of DTLB formation. This suite of 14C (Carbon-14) ages provides insight into the timing of lake drainage on the North Slope of Alaska across a range of ecosystems and surficial geology types.more » « less
An official website of the United States government

