Abstract Short γ -ray burst (sGRB) jets form in the aftermath of a neutron star merger, drill through disk winds and dynamical ejecta, and extend over four to five orders of magnitude in distance before breaking out of the ejecta. We present the first 3D general-relativistic magnetohydrodynamic sGRB simulations to span this enormous scale separation. They feature three possible outcomes: jet+cocoon, cocoon, and neither. Typical sGRB jets break out of the dynamical ejecta if (i) the bound ejecta’s isotropic equivalent mass along the pole at the time of the BH formation is ≲10 −4 M ⊙ , setting a limit on the delay time between the merger and BH formation, otherwise, the jets perish inside the ejecta and leave the jet-inflated cocoon to power a low-luminosity sGRB; (ii) the postmerger remnant disk contains a strong large-scale vertical magnetic field, ≳10 15 G; and (iii) if the jets are weak (≲10 50 erg), the ejecta’s isotropic equivalent mass along the pole must be small (≲10 −2 M ⊙ ). Generally, the jet structure is shaped by the early interaction with disk winds rather than the dynamical ejecta. As long as our jets break out of the ejecta, they retain a significant magnetization (≲1), suggesting that magnetic reconnection is a fundamental property of sGRB emission. The angular structure of the outflow isotropic equivalent energy after breakout consistently features a flat core followed by a steep power-law distribution (slope ≳3), similar to hydrodynamic jets. In the cocoon-only outcome, the dynamical ejecta broadens the outflow angular distribution and flattens it (slope ∼1.5).
more »
« less
Conditions for jet breakout in neutron stars’ mergers
ABSTRACT We consider conditions for jet breakout through ejecta following mergers of neutron stars and provide simple relations for the breakout conditions. We demonstrate that: (i) break-out requires that the isotropic-equivalent jet energy Ej exceeds the ejecta energy Eej by Ej ≥ Eej/βej, where βej = Vej/c, Vej is the maximum velocity of the ejecta. If the central engine terminates before the breakout, the shock approaches the edge of the ejecta slowly ∝ 1/t; late breakout occurs only if at the termination moment the head of the jet was relatively close to the edge. (ii) If there is a substantial delay between the ejecta’s and the jet’s launching, the requirement on the jet power increases. (iii) The forward shock driven by the jet is mildly strong, with Mach number M ≈ 5/4 (increasing with time delay td); (iii) the delay time td between the ejecta and the jet’s launching is important for $$t_\mathrm{ d} \gt t_0= ({3 }/{16}) {c M_{\mathrm{ ej}} V_{\mathrm{ ej}}}/{L_\mathrm{ j}} = 1.01 {\rm \mathrm{ s}} M_{\mathrm{ ej}, -2} L_{\mathrm{ j}, 51} ^{-1} \left({\beta _{\mathrm{ ej}}} /{0.3} \right)$$, where Mej is ejecta mass, Lj is the jet luminosity (isotropic equivalent). For small delays, t0 is also an estimate of the break-out time.
more »
« less
- Award ID(s):
- 1908590
- PAR ID:
- 10124721
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 491
- Issue:
- 1
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 483-487
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of $${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$$, we can rule out very energetic merger ejecta $${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$$, thus excluding the presence of a powerful magnetar as a merger remnant.more » « less
-
Abstract The association of GRB170817A with GW170817 has confirmed the long-standing hypothesis that binary neutron star (BNS) mergers are the progenitors of at least some short gamma-ray bursts (SGRBs). This connection has ushered in an era in which broadband observations of SGRBs, together with measurements of the time delay between the gravitational waves and the electromagnetic radiation, allow for probing the properties of the emitting outflow and its engine to an unprecedented detail. Because the structure of the radiating outflow is molded by the interaction of a relativistic jet with the binary ejecta, it is of paramount importance to study the system in a realistic setting. Here we present a three-dimensional hydrodynamic simulation of a relativistic jet propagating in the ejecta of a BNS merger, which were computed with a general relativistic magnetohydrodynamic simulation. We find that the jet’s centroid oscillates around the axis of the system, due to inhomogeneities encountered in the propagation. These oscillations allow the jet to find the path of least resistance and travel faster than an identical jet in smooth ejecta. In our setup the breakout time is ∼0.6 s, which is comparable to the expected central engine duration in SGRBs and possibly a non-negligible fraction of the total delay between the gravitational and gamma-ray signals. Our simulation also shows that energy is carried in roughly equal amounts by the jet and by the cocoon, and that about 20% of the injected energy is transferred to the ejecta via mechanical work.more » « less
-
null (Ed.)ABSTRACT The merger of two neutron stars produces an outflow of radioactive heavy nuclei. Within a second of merger, the central remnant is expected to also launch a relativistic jet, which shock-heats and disrupts a portion of the radioactive ejecta. Within a few hours, emission from the radioactive material gives rise to an ultraviolet, optical, and infrared transient (a kilonova). We use the endstates of a suite of 2D relativistic hydrodynamic simulations of jet–ejecta interaction as initial conditions for multidimensional Monte Carlo radiation transport simulations of the resulting viewing angle-dependent light curves and spectra starting at $$1.5\, \mathrm{h}$$ after merger. We find that on this time-scale, jet shock heating does not affect the kilonova emission for the jet parameters we survey. However, the jet disruption to the density structure of the ejecta does change the light curves. The jet carves a channel into the otherwise spheroidal ejecta, revealing the hot, inner regions. As seen from near (≲30°) the jet axis, the kilonova is brighter by a factor of a few and bluer. The strength of this effect depends on the jet parameters, since the light curves of more heavily disrupted ejecta are more strongly affected. The light curves and spectra are also more heavily modified in the ultraviolet than in the optical.more » « less
-
Abstract In order to better connect core-collapse supernova (CCSN) theory with its observational signatures, we have developed a simulation pipeline from the onset of the core collapse to beyond shock breakout from the stellar envelope. Using this framework, we present a 3D simulation study from 5 s to over 5 days following the evolution of a 17M⊙progenitor, exploding with ∼1051erg of energy and ∼0.1M⊙of56Ni ejecta. The early explosion is highly asymmetric, expanding most prominently along the southern hemisphere. This early asymmetry is preserved to shock breakout, ∼1 day later. Breakout itself evinces strong angle-dependence, with as much as 1 day delay in the shock breakout by direction. The nickel ejecta closely tail the forward shock, with velocities at the breakout as high as ∼7000 km s−1. A delayed reverse shock forming at the H/He interface on hour timescales leads to the formation of Rayleigh–Taylor instabilities, fast-moving nickel bullets, and almost complete mixing of the metal core into the hydrogen envelope. For the first time, we illustrate the angle-dependent emergent broadband and bolometric light curves from simulations evolved in 3D in entirety, continuing through hydrodynamic shock breakout from a CCSN model of a massive stellar progenitor evolved with detailed, late-time neutrino microphysics and transport. Our case study of a single progenitor underscores that 3D simulations generically produce the cornucopia of observed asymmetries and features in CCSNe observations, while establishing the methodology to study this problem in breadth.more » « less
An official website of the United States government
