skip to main content

This content will become publicly available on June 28, 2023

Title: On the Jet–Ejecta Interaction in 3D GRMHD Simulations of a Binary Neutron Star Merger Aftermath
Abstract Short γ -ray burst (sGRB) jets form in the aftermath of a neutron star merger, drill through disk winds and dynamical ejecta, and extend over four to five orders of magnitude in distance before breaking out of the ejecta. We present the first 3D general-relativistic magnetohydrodynamic sGRB simulations to span this enormous scale separation. They feature three possible outcomes: jet+cocoon, cocoon, and neither. Typical sGRB jets break out of the dynamical ejecta if (i) the bound ejecta’s isotropic equivalent mass along the pole at the time of the BH formation is ≲10 −4 M ⊙ , setting a limit on the delay time between the merger and BH formation, otherwise, the jets perish inside the ejecta and leave the jet-inflated cocoon to power a low-luminosity sGRB; (ii) the postmerger remnant disk contains a strong large-scale vertical magnetic field, ≳10 15 G; and (iii) if the jets are weak (≲10 50 erg), the ejecta’s isotropic equivalent mass along the pole must be small (≲10 −2 M ⊙ ). Generally, the jet structure is shaped by the early interaction with disk winds rather than the dynamical ejecta. As long as our jets break out of the ejecta, they retain a significant more » magnetization (≲1), suggesting that magnetic reconnection is a fundamental property of sGRB emission. The angular structure of the outflow isotropic equivalent energy after breakout consistently features a flat core followed by a steep power-law distribution (slope ≳3), similar to hydrodynamic jets. In the cocoon-only outcome, the dynamical ejecta broadens the outflow angular distribution and flattens it (slope ∼1.5). « less
; ; ; ; ;
Award ID(s):
2107839 1815304 2031997
Publication Date:
Journal Name:
The Astrophysical Journal Letters
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this

    We consider conditions for jet breakout through ejecta following mergers of neutron stars and provide simple relations for the breakout conditions. We demonstrate that: (i) break-out requires that the isotropic-equivalent jet energy Ej exceeds the ejecta energy Eej by Ej ≥ Eej/βej, where βej = Vej/c, Vej is the maximum velocity of the ejecta. If the central engine terminates before the breakout, the shock approaches the edge of the ejecta slowly ∝ 1/t; late breakout occurs only if at the termination moment the head of the jet was relatively close to the edge. (ii) If there is a substantial delay between the ejecta’s and the jet’s launching, the requirement on the jet power increases. (iii) The forward shock driven by the jet is mildly strong, with Mach number M ≈ 5/4 (increasing with time delay td); (iii) the delay time td between the ejecta and the jet’s launching is important for $t_\mathrm{ d} \gt t_0= ({3 }/{16}) {c M_{\mathrm{ ej}} V_{\mathrm{ ej}}}/{L_\mathrm{ j}} = 1.01 {\rm \mathrm{ s}} M_{\mathrm{ ej}, -2} L_{\mathrm{ j}, 51} ^{-1} \left({\beta _{\mathrm{ ej}}} /{0.3} \right)$, where Mej is ejecta mass, Lj is the jet luminosity (isotropic equivalent). For small delays, t0 is also an estimate of the break-out time.


    We present small-scale 3D hydrodynamical simulations of the evolution of a 0.3 M⊙ main-sequence (MS) star that launches two perpendicular jets within the envelope of a 0.88 M⊙ red giant (RG). Based on previous large-scale simulations, we study the dynamics of the jets either when the secondary star is grazing, when it has plunged-in, or when it is well within the envelope of the RG (in each stage for ∼11 d). The dynamics of the jets through the common envelope (CE) depend on the conditions of the environment as well as on their powering. In the grazing stage and the commencement of the plunge self-regulated jets need higher efficiencies to break out of the envelope of the RG. Deep inside the CE, on the time-scales simulated, jets are choked independently of whether they are self-regulated or constantly powered. Jets able to break out of the envelope of the RG in large-scale simulations, are choked in our small-scale simulations. The accreted angular momentum on to the secondary star is not large enough to form a disc. The mass accretion on to the MS star is 1–10 per cent of the Bondi–Hoyle–Littleton rate (∼10−3–10−1 M⊙ yr−1). High-luminosity emission, from X-rays to ultraviolet and optical, is expected ifmore »the jets break out of the CE. Our simulations illustrate the need for inclusion of more realistic accretion and jet models in the dynamical evolution of the CEs.

    « less
  3. ABSTRACT Without additional heating, radiative cooling of the halo gas of massive galaxies (Milky Way-mass and above) produces cold gas or stars exceeding that observed. Heating from active galactic nucleus (AGN) jets is likely required, but the jet properties remain unclear. This is particularly challenging for galaxy simulations, where the resolution is orders-of-magnitude insufficient to resolve jet formation and evolution. On such scales, the uncertain parameters include the jet energy form [kinetic, thermal, cosmic ray (CR)]; energy, momentum, and mass flux; magnetic fields; opening angle; precession; and duty cycle. We investigate these parameters in a $10^{14}\, {\rm M}_{\odot }$ halo using high-resolution non-cosmological magnetohydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, conduction, and viscosity. We explore which scenarios qualitatively meet observational constraints on the halo gas and show that CR-dominated jets most efficiently quench the galaxy by providing CR pressure support and modifying the thermal instability. Mildly relativistic (∼MeV or ∼1010K) thermal plasma jets work but require ∼10 times larger energy input. For fixed energy flux, jets with higher specific energy (longer cooling times) quench more effectively. For this halo mass, kinetic jets are inefficient at quenching unless they have wide opening or precession angles. Magnetic fieldsmore »also matter less except when the magnetic energy flux reaches ≳ 1044 erg s−1 in a kinetic jet model, which significantly widens the jet cocoon. The criteria for a successful jet model are an optimal energy flux and a sufficiently wide jet cocoon with a long enough cooling time at the cooling radius.« less
  4. Abstract Stellar-mass BHs (sBHs) are predicted to be embedded in active galactic nucleus (AGN) disks owing to gravitational drag and in situ star formation. However, we find that, due to a high gas density in an AGN disk environment, compact objects may rapidly grow to intermediate-mass BHs and deplete matter from the AGN disk unless accretion is suppressed by some feedback process(es). These consequences are inconsistent with AGN observations and the dynamics of the Galactic center. Here we consider mechanical feedback mechanisms for the reduction of gas accretion. Rapidly accreting sBHs launch winds and/or jets via the Blandford–Znajek mechanism, which produce high-pressure shocks and cocoons. Such a shock and cocoon can spread laterally in the plane of the disk, eject the outer regions of a circum-sBH disk (CsBD), and puncture a hole in the AGN disk with horizontal size comparable to the disk scale height. Since the depletion timescale of the bound CsBD is much shorter than the resupply timescale of gas to the sBH, the time-averaged accretion rate onto sBHs is reduced by this process by a factor of ∼10–100. This feedback mechanism can therefore help alleviate the sBH overgrowth and AGN disk depletion problems. On the other hand,more »we find that cocoons of jets can unbind a large fraction of the gas accreting in the disks of less massive supermassive BHs (SMBHs), which may help explain the dearth of high-Eddington-ratio AGNs with SMBH mass ≲ 10 5 M ⊙ .« less
  5. Abstract

    In addition to a supermassive black hole (SMBH), the central parsec of the Milky Way hosts over 100 massive, high-velocity young stars whose existence, and organization of a subset of them in one, or possibly two, misaligned disks, is puzzling. Due to a combination of low medium density and strong tidal forces in the vicinity of Sgr A*, stars are not expected to form. Here we propose a novel scenario for their in situ formation: a jetted tidal disruption event (TDE) from an older wandering star triggers an episode of positive feedback of star formation in the plane perpendicular to the jet, as demonstrated via numerical simulations in the context of jet-induced feedback in galactic outflows. An overpressured cocoon surrounding the jet shock-compresses clumps to densities high enough to resist the SMBH tidal field. The TDE rate of 10−5–10−4yr−1per galaxy, out of which a few percent of events are jetted, implies a jetted TDE event per galaxy to occur every few million years. This timescale is interestingly of the same order of the age of the disk stars. The mass function predicted by our mechanism is top heavy. Additionally, since TDEs are isotropic, our model predicts a random orientationmore »for the disk of stars with respect to the plane of the galaxy and, due to the relatively high TDE rate, can account for multiple disks of stars with uncorrelated orientations.

    « less