skip to main content


Title: The Case for Combining a Large Low‐Band Very High Frequency Transmitter With Multiple Receiving Arrays for Geospace Research: A Geospace Radar
Abstract

We argue that combining a high‐power, large‐aperture radar transmitter with several large‐aperture receiving arrays to make a geospace radar—a radar capable of probing near‐Earth space from the upper troposphere through to the solar corona—would transform geospace research. We review the emergence of incoherent scatter radar in the 1960s as an agent that unified early, pioneering research in geospace in a common theoretical, experimental, and instrumental framework, and we suggest that a geospace radar would have a similar effect on future developments in space weather research. We then discuss recent developments in radio‐array technology that could be exploited in the development of a geospace radar with new or substantially improved capabilities compared to the radars in use presently. A number of applications for a geospace radar with the new and improved capabilities are reviewed including studies of meteor echoes, mesospheric and stratospheric turbulence, ionospheric flows, plasmaspheric and ionospheric irregularities, and reflection from the solar corona and coronal mass ejections. We conclude with a summary of technical requirements.

 
more » « less
Award ID(s):
1732209
NSF-PAR ID:
10443907
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Radio Science
Volume:
54
Issue:
7
ISSN:
0048-6604
Page Range / eLocation ID:
p. 533-551
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An interplanetary shock can abruptly compress the magnetosphere, excite magnetospheric waves and field‐aligned currents, and cause a ground magnetic response known as a sudden commencement (SC). However, the transient (<∼1 min) response of the ionosphere‐thermosphere system during an SC has been little studied due to limited temporal resolution in previous investigations. Here, we report observations of a global reversal of ionospheric vertical plasma motion during an SC on 24 October 2011 using ∼6 s resolution Super Dual Auroral Radar Network ground scatter data. The dayside ionosphere suddenly moved downward during the magnetospheric compression due to the SC, lasting for only ∼1 min before moving upward. By contrast, the post‐midnight ionosphere briefly moved upward then moved downward during the SC. Simulations with a coupled geospace model suggest that the reversedvertical drift is caused by a global reversal of ionospheric zonal electric field induced by magnetospheric compression during the SC.

     
    more » « less
  2. Abstract

    In situ measurements of the solar wind have been available for almost 60 years, and in that time plasma physics simulation capabilities have commenced and ground‐based solar observations have expanded into space‐based solar observations. These observations and simulations have yielded an increasingly improved knowledge of fundamental physics and have delivered a remarkable understanding of the solar wind and its complexity. Yet there are longstanding major unsolved questions. Synthesizing inputs from the solar wind research community, nine outstanding questions of solar wind physics are developed and discussed in this commentary. These involve questions about the formation of the solar wind, about the inherent properties of the solar wind (and what the properties say about its formation), and about the evolution of the solar wind. The questions focus on (1) origin locations on the Sun, (2) plasma release, (3) acceleration, (4) heavy‐ion abundances and charge states, (5) magnetic structure, (6) Alfven waves, (7) turbulence, (8) distribution‐function evolution, and (9) energetic‐particle transport. On these nine questions we offer suggestions for future progress, forward looking on what is likely to be accomplished in near future with data from Parker Solar Probe, from Solar Orbiter, from the Daniel K. Inouye Solar Telescope (DKIST), and from Polarimeter to Unify the Corona and Heliosphere (PUNCH). Calls are made for improved measurements, for higher‐resolution simulations, and for advances in plasma physics theory.

     
    more » « less
  3. :Chaosong Huang, Gang Lu (Ed.)
    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of meso-scale and small-scale structure of the subauroral geospace, connecting ionospheric structures to plasma wave processes in the turbulent plasmasphere boundary layer (TPBL). Free energy for plasma waves comes from diamagnetic electron and ion currents in the entry layer near the plasma sheet boundary and near the TPBL inner boundary, respectively, and anisotropic distributions of energetic ions inside the TPBL and interior to the inner boundary. Collisionless heating of the plasmaspheric particles gives downward heat and suprathermal electron fluxes sufficient to provide the F-region electron temperature greater than 6000 K. This leads to the formation of specific density troughs in the ionospheric regions in the absence of strong electric fields and upward plasma flows. Small-scale MHD wave structures (SAPSWS) and irregular density troughs emerge on the duskside, coincident with the substorm current wedge development. Numerical simulations show that the ionospheric feedback instability significantly contributes to the SAPSWS formation. Antiparallel temperature and density gradients inside the subauroral troughs lead to the temperature gradient instability. The latter and the gradient-drift instability lead to enhanced decameter-scale irregularities responsible for subauroral HF radar backscatter 
    more » « less
  4. Abstract

    Motivated by low‐altitude cusp observations of small‐scale (~1 km) field‐aligned currents (SSFACs) interpreted as ionospheric Alfvén resonator modes, we have investigated the effects of Alfvén wave energy deposition on thermospheric upwelling and the formation of air density enhancements in and near the cusp. Such density enhancements were commonly observed near 400 km altitude by the CHAMP satellite. They are not predicted by empirical thermosphere models, and they are well correlated with the observed SSFACs. A parameterized model for the altitude dependence of the Alfvén wave electric field, constrained by CHAMP data, has been developed and embedded in the Joule heating module of the National Center for Atmospheric Research (NCAR) Coupled Magnetosphere‐Ionosphere‐Thermosphere (CMIT) model. The CMIT model was then used to simulate the geospace response to an interplanetary stream interaction region (SIR) that swept past Earth on 26–27 March 2003. CMIT diagnostics for the thermospheric mass density at 400 km altitude show (1) CMIT without Alfvénic Joule heating usually underestimates CHAMP'sorbit‐averagedensity; inclusion of Alfvénic heating modestly improves CMIT's orbit‐average prediction of the density (by a few %), especially during the more active periods of the SIR event. (2) The improvement in CMIT'sinstantaneousdensity prediction with Alfvénic heating included is more significant (up to 15%) in the vicinity of the cusp heating region, a feature that the MSIS empirical thermosphere model misses for this event. Thermospheric density changes of 20–30% caused by the cusp‐region Alfvénic heating sporadically populate the polar region through the action of corotation and neutral winds.

     
    more » « less
  5. Abstract

    A new observational phenomenon, named Simultaneous Global Ionospheric Density Disturbance (SGD), is identified in GNSS total electron content (TEC) data during periods of three typical geospace disturbances: a Coronal Mass Ejection‐driven severe disturbance event, a high‐speed stream event, and a minor disturbance day with a maximum Kp of 4. SGDs occur frequently on dayside and dawn sectors, with a ∼1% TEC increase. Notably, SGDs can occur under minor solar‐geomagnetic disturbances. SGDs are likely caused by penetration electric fields (PEFs) of solar‐geomagnetic origin, as they are associated with Bz southward, increased auroral AL/AU, and solar wind pressure enhancements. These findings offer new insights into the nature of PEFs and their ionospheric impact while confirming some key earlier results obtained through alternative methods. Importantly, the accessibility of extensive GNSS networks, with at least 6,000 globally distributed receivers for ionospheric research, means that rich PEF information can be acquired, offering researchers numerous opportunities to investigate geospace electrodynamics.

     
    more » « less