skip to main content


Title: Long-term geospace climate monitoring
Climate change is characterized by global surface warming associated with the increase of greenhouse gas population since the start of the industrial era. Growing evidence shows that the upper atmosphere is experiencing appreciable cooling over the last several decades. The seminal modeling study by Roble and Dickinson (1989) suggested potential effects of increased greenhouse gases on the ionosphere and thermosphere cooling which appear consistent with some observations. However, several outstanding issues remain regarding the role of CO 2 , other important contributors, and impacts of the cooling trend in the ionosphere and thermosphere: for example, (1) what is the regional variability of the trends? (2) the very strong ionospheric cooling observed by multiple incoherent scatter radars that does not fit with the prevailing theory based on the argument of anthropogenic greenhouse gas increases, why? (3) what is the effect of secular changes in Earth’s main magnetic field? Is it visible now in the ionospheric data and can it explain some of the regional variability in the observed ionospheric trends? (4) what is the impact of long-term cooling in the thermosphere on operational systems? (5) what are the appropriate strategic plans to ensure the long-term monitoring of the critical space climate?  more » « less
Award ID(s):
2149698 1952737 2033787
NSF-PAR ID:
10404693
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
10
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Motivated by numerous lower atmosphere climate model hindcast simulations, we performed simulations of the Earth's atmosphere from the surface up through the thermosphere‐ionosphere to reveal for the first time the century scale changes in the upper atmosphere from the 1920s through the 2010s using the Whole Atmosphere Community Climate Model—eXtended (WACCM‐X v. 2.1). We impose solar minimum conditions to get a clear indication of the effects of the long‐term forcing from greenhouse gas increases and changes of the Earth's magnetic field and to avoid the requirement for careful removal of the 11‐year solar cycle as in some previous studies using observations and models. These previous studies have shown greenhouse gas effects in the upper atmosphere but what has been missing is the time evolution with actual greenhouse gas increases throughout the last century, including the period of less than 5% increase prior to the space age and the transition to the over 25% increase in the latter half of the 20th century. Neutral temperature, density, and ionosphere changes are close to those reported in previous studies. Also, we find high correlation between the continuous carbon dioxide rate of change over this past century and that of temperature in the thermosphere and the ionosphere, attributed to the shorter adjustment time of the upper atmosphere to greenhouse gas changes relative to the longer time in the lower atmosphere. Consequently, WACCM‐X future scenario projections can provide valuable insight in the entire atmosphere of future greenhouse gas effects and mitigation efforts.

     
    more » « less
  2. Methane and carbon dioxide effluxes from aquatic systems in the Arctic will affect and likely amplify global change. As permafrost thaws in a warming world, more dissolved organic carbon (DOC) and greenhouse gases are produced and move from soils to surface waters where the DOC can be oxidized to CO 2 and also released to the atmosphere. Our main study objective is to measure the release of carbon to the atmosphere via effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep, dimictic, low-arctic lake in northern Alaska. By combining direct eddy covariance flux measurements with continuous gas pressure measurements in the lake surface waters, we quantified the k 600 piston velocity that controls gas flux across the air–water interface. Our measured k values for CH 4 and CO 2 were substantially above predictions from several models at low to moderate wind speeds, and only converged on model predictions at the highest wind speeds. We attribute this higher flux at low wind speeds to effects on water-side turbulence resulting from how the surrounding tundra vegetation and topography increase atmospheric turbulence considerably in this lake, above the level observed over large ocean surfaces. We combine this process-level understanding of gas exchange with the trends of a climate-relevant long-term (30 + years) meteorological data set at Toolik Lake to examine short-term variations (2015 ice-free season) and interannual variability (2010–2015 ice-free seasons) of CH 4 and CO 2 fluxes. We argue that the biological processing of DOC substrate that becomes available for decomposition as the tundra soil warms is important for understanding future trends in aquatic gas fluxes, whereas the variability and long-term trends of the physical and meteorological variables primarily affect the timing of when higher or lower than average fluxes are observed. We see no evidence suggesting that a tipping point will be reached soon to change the status of the aquatic system from gas source to sink. We estimate that changes in CH 4 and CO 2 fluxes will be constrained with a range of +30% and −10% of their current values over the next 30 years. 
    more » « less
  3. Abstract

    Observational records of meteorological and chemical variables are imprinted by an unknown combination of anthropogenic activity, natural forcings, and internal variability. With a 15-member initial-condition ensemble generated from the CESM2-WACCM6 chemistry-climate model for 1950–2014, we extract signals of anthropogenic (‘forced’) change from the noise of internally arising climate variability on observed tropospheric ozone trends. Positive trends in free tropospheric ozone measured at long-term surface observatories, by commercial aircraft, and retrieved from satellite instruments generally fall within the ensemble range. CESM2-WACCM6 tropospheric ozone trends are also bracketed by those in a larger ensemble constructed from five additional chemistry-climate models. Comparison of the multi-model ensemble with observed tropospheric column ozone trends in the northern tropics implies an underestimate in regional precursor emission growth over recent decades. Positive tropospheric ozone trends clearly emerge from 1950 to 2014, exceeding 0.2 DU yr−1at 20–40 N in all CESM2-WACCM6 ensemble members. Tropospheric ozone observations are often only available for recent decades, and we show that even a two-decade record length is insufficient to eliminate the role of internal variability, which can produce regional tropospheric ozone trends oppositely signed from ensemble mean (forced) changes. By identifying regions and seasons with strong anthropogenic change signals relative to internal variability, initial-condition ensembles can guide future observing systems seeking to detect anthropogenic change. For example, analysis of the CESM2-WACCM6 ensemble reveals year-round upper tropospheric ozone increases from 1995 to 2014, largest at 30 S–40 N during boreal summer. Lower tropospheric ozone increases most strongly in the winter hemisphere, and internal variability leads to trends of opposite sign (ensemble overlaps zero) north of 40 N during boreal summer. This decoupling of ozone trends in the upper and lower troposphere suggests a growing prominence for tropospheric ozone as a greenhouse gas despite regional efforts to abate warm season ground-level ozone.

     
    more » « less
  4. Abstract

    Over the past decades, temperature and density of the upper atmosphere show negative trends and this decrease of the upper atmospheric temperature is attributed to the declining neutral density. Specifically, nitric oxide (NO) and carbon dioxide (CO2) govern thermospheric cooling at 5.3 and 15 μm, respectively. While a lot of efforts have focused on the CO2effects on the long‐term trends, relatively less attention has been paid to the impacts by NO, which responds to solar and geomagnetic activities dynamically. In this study, we investigate the role of NO in climatological global energy budget for the recent three solar cycles using the Global Ionosphere‐Thermosphere Model. From 1982 to 2013, the F10.7 and Ap indices showed a decadal decrease of ~8% and ~20%, respectively. By imposing temporal‐varying F10.7 and Ap values in the simulations, we find a decadal change of −0.28 × 1011 W or −17.3% in total NO cooling power, which agrees well with that (−0.34 × 1011 W or −17.2%) from the empirical Thermosphere Climate Index derived from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry data. Neutral density decreases by 10–20% at 200–450 km and Texdecreases by 25.3 K per decade. The deduced‐decadal change of NO cooling reaches ~25% of that of total heating at ~130 km and its significance decreases with altitude.

     
    more » « less
  5. Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas–induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models’ responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios—including some in which recent historical trends continue—even if such projections cannot currently be produced using existing coupled earth system models. 
    more » « less