skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-Ensembling Attention Networks: Addressing Domain Shift for Semantic Segmentation
Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.  more » « less
Award ID(s):
1651740
PAR ID:
10125066
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
33
ISSN:
2159-5399
Page Range / eLocation ID:
5581 to 5588
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Training a semantic segmentation model requires large densely-annotated image datasets that are costly to obtain. Once the training is done, it is also difficult to add new object categories to such segmentation models. In this paper, we tackle the few-shot semantic segmentation problem, which aims to perform image segmentation task on unseen object categories merely based on one or a few support example(s). The key to solving this few-shot segmentation problem lies in effectively utilizing object information from support examples to separate target objects from the background in a query image. While existing methods typically generate object-level representations by averaging local features in support images, we demonstrate that such object representations are typically noisy and less distinguishing. To solve this problem, we design an object representation generator (ORG) module which can effectively aggregate local object features from support image( s) and produce better object-level representation. The ORG module can be embedded into the network and trained end-to-end in a weakly-supervised fashion without extra human annotation. We incorporate this design into a modified encoder-decoder network to present a powerful and efficient framework for few-shot semantic segmentation. Experimental results on the Pascal-VOC and MS-COCO datasets show that our approach achieves better performance compared to existing methods under both one-shot and five-shot settings. 
    more » « less
  2. Simulation-to-real domain adaptation for semantic segmentation has been actively studied for various applications such as autonomous driving. Existing methods mainly focus on a single-source setting, which cannot easily handle a more practical scenario of multiple sources with different distributions. In this paper, we propose to investigate multi-source domain adaptation for semantic segmentation. Specifically, we design a novel framework, termed Multi-source Adversarial Domain Aggregation Network (MADAN), which can be trained in an end-to-end manner. First, we generate an adapted domain for each source with dynamic semantic consistency while aligning at the pixel-level cycle-consistently towards the target. Second, we propose sub-domain aggregation discriminator and cross-domain cycle discriminator to make different adapted domains more closely aggregated. Finally, feature-level alignment is performed between the aggregated domain and target domain while training the segmentation network. Extensive experiments from synthetic GTA and SYNTHIA to real Cityscapes and BDDS datasets demonstrate that the proposed MADAN model outperforms state-of-the-art approaches. Our source code is released at: https://github.com/Luodian/MADAN. 
    more » « less
  3. null (Ed.)
    Training a semantic segmentation model requires large densely-annotated image datasets that are costly to obtain. Once the training is done, it is also difficult to add new ob- ject categories to such segmentation models. In this pa- per, we tackle the few-shot semantic segmentation prob- lem, which aims to perform image segmentation task on un- seen object categories merely based on one or a few sup- port example(s). The key to solving this few-shot segmen- tation problem lies in effectively utilizing object informa- tion from support examples to separate target objects from the background in a query image. While existing meth- ods typically generate object-level representations by av- eraging local features in support images, we demonstrate that such object representations are typically noisy and less distinguishing. To solve this problem, we design an ob- ject representation generator (ORG) module which can ef- fectively aggregate local object features from support im- age(s) and produce better object-level representation. The ORG module can be embedded into the network and trained end-to-end in a weakly-supervised fashion without extra hu- man annotation. We incorporate this design into a modified encoder-decoder network to present a powerful and efficient framework for few-shot semantic segmentation. Experimen- tal results on the Pascal-VOC and MS-COCO datasets show that our approach achieves better performance compared to existing methods under both one-shot and five-shot settings. 
    more » « less
  4. Weakly Supervised Semantic Segmentation (WSSS) provides efficient solutions for semantic image segmentation using image-level annotations. WSSS requires no pixel-level labeling that Fully Supervised Semantic Segmentation (FSSS) does, which is time-consuming and label-intensive. Most WSSS approaches have leveraged Class Activation Maps (CAM) or Self-Attention (SA) to generate pseudo pixel-level annotations to perform semantic segmentation tasks coupled with fully supervised approaches (e.g., Fully Convolutional Network). However, those approaches often provides incomplete supervision that mainly includes discriminative regions from the last convolutional layer. They may fail to capture regions of low- or intermediate-level features that may not be present in the last convolutional layer. To address the issue, we proposed a novel Multi-layered Self-Attention (Multi-SA) method that applies a self-attention module to multiple convolutional layers, and then stack feature maps from the self-attention layers to generate pseudo pixel-level annotations. We demonstrated that integrated feature maps from multiple self-attention layers produce higher coverage in semantic segmentation than using only the last convolutional layer through intensive experiments using standard benchmark datasets. 
    more » « less
  5. 3D instance segmentation for unlabeled imaging modalities is a challenging but essential task as collecting expert annotation can be expensive and time-consuming. Existing works segment a new modality by either deploying pre-trained models optimized on diverse training data or sequentially conducting image translation and segmentation with two relatively independent networks. In this work, we propose a novel Cyclic Segmentation Generative Adversarial Network (CySGAN) that conducts image translation and instance segmentation simultaneously using a unified network with weight sharing. Since the image translation layer can be removed at inference time, our proposed model does not introduce additional computational cost upon a standard segmentation model. For optimizing CySGAN, besides the CycleGAN losses for image translation and supervised losses for the annotated source domain, we also utilize self-supervised and segmentation-based adversarial objectives to enhance the model performance by leveraging unlabeled target domain images. We benchmark our approach on the task of 3D neuronal nuclei segmentation with annotated electron microscopy (EM) images and unlabeled expansion microscopy (ExM) data. The proposed CySGAN outperforms pre-trained generalist models, feature-level domain adaptation models, and the baselines that conduct image translation and segmentation sequentially. Our implementation and the newly collected, densely annotated ExM zebrafish brain nuclei dataset, named NucExM, are publicly available at https://connectomics-bazaar.github.io/proj/CySGAN/index.html. 
    more » « less