skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Self-Ensembling Attention Networks: Addressing Domain Shift for Semantic Segmentation
Recent years have witnessed the great success of deep learning models in semantic segmentation. Nevertheless, these models may not generalize well to unseen image domains due to the phenomenon of domain shift. Since pixel-level annotations are laborious to collect, developing algorithms which can adapt labeled data from source domain to target domain is of great significance. To this end, we propose self-ensembling attention networks to reduce the domain gap between different datasets. To the best of our knowledge, the proposed method is the first attempt to introduce selfensembling model to domain adaptation for semantic segmentation, which provides a different view on how to learn domain-invariant features. Besides, since different regions in the image usually correspond to different levels of domain gap, we introduce the attention mechanism into the proposed framework to generate attention-aware features, which are further utilized to guide the calculation of consistency loss in the target domain. Experiments on two benchmark datasets demonstrate that the proposed framework can yield competitive performance compared with the state of the art methods.  more » « less
Award ID(s):
1651740
NSF-PAR ID:
10125066
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
33
ISSN:
2159-5399
Page Range / eLocation ID:
5581 to 5588
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Training a semantic segmentation model requires large densely-annotated image datasets that are costly to obtain. Once the training is done, it is also difficult to add new object categories to such segmentation models. In this paper, we tackle the few-shot semantic segmentation problem, which aims to perform image segmentation task on unseen object categories merely based on one or a few support example(s). The key to solving this few-shot segmentation problem lies in effectively utilizing object information from support examples to separate target objects from the background in a query image. While existing methods typically generate object-level representations by averaging local features in support images, we demonstrate that such object representations are typically noisy and less distinguishing. To solve this problem, we design an object representation generator (ORG) module which can effectively aggregate local object features from support image( s) and produce better object-level representation. The ORG module can be embedded into the network and trained end-to-end in a weakly-supervised fashion without extra human annotation. We incorporate this design into a modified encoder-decoder network to present a powerful and efficient framework for few-shot semantic segmentation. Experimental results on the Pascal-VOC and MS-COCO datasets show that our approach achieves better performance compared to existing methods under both one-shot and five-shot settings. 
    more » « less
  2. Simulation-to-real domain adaptation for semantic segmentation has been actively studied for various applications such as autonomous driving. Existing methods mainly focus on a single-source setting, which cannot easily handle a more practical scenario of multiple sources with different distributions. In this paper, we propose to investigate multi-source domain adaptation for semantic segmentation. Specifically, we design a novel framework, termed Multi-source Adversarial Domain Aggregation Network (MADAN), which can be trained in an end-to-end manner. First, we generate an adapted domain for each source with dynamic semantic consistency while aligning at the pixel-level cycle-consistently towards the target. Second, we propose sub-domain aggregation discriminator and cross-domain cycle discriminator to make different adapted domains more closely aggregated. Finally, feature-level alignment is performed between the aggregated domain and target domain while training the segmentation network. Extensive experiments from synthetic GTA and SYNTHIA to real Cityscapes and BDDS datasets demonstrate that the proposed MADAN model outperforms state-of-the-art approaches. Our source code is released at: https://github.com/Luodian/MADAN. 
    more » « less
  3. null (Ed.)
    Training a semantic segmentation model requires large densely-annotated image datasets that are costly to obtain. Once the training is done, it is also difficult to add new ob- ject categories to such segmentation models. In this pa- per, we tackle the few-shot semantic segmentation prob- lem, which aims to perform image segmentation task on un- seen object categories merely based on one or a few sup- port example(s). The key to solving this few-shot segmen- tation problem lies in effectively utilizing object informa- tion from support examples to separate target objects from the background in a query image. While existing meth- ods typically generate object-level representations by av- eraging local features in support images, we demonstrate that such object representations are typically noisy and less distinguishing. To solve this problem, we design an ob- ject representation generator (ORG) module which can ef- fectively aggregate local object features from support im- age(s) and produce better object-level representation. The ORG module can be embedded into the network and trained end-to-end in a weakly-supervised fashion without extra hu- man annotation. We incorporate this design into a modified encoder-decoder network to present a powerful and efficient framework for few-shot semantic segmentation. Experimen- tal results on the Pascal-VOC and MS-COCO datasets show that our approach achieves better performance compared to existing methods under both one-shot and five-shot settings. 
    more » « less
  4. Weakly Supervised Semantic Segmentation (WSSS) provides efficient solutions for semantic image segmentation using image-level annotations. WSSS requires no pixel-level labeling that Fully Supervised Semantic Segmentation (FSSS) does, which is time-consuming and label-intensive. Most WSSS approaches have leveraged Class Activation Maps (CAM) or Self-Attention (SA) to generate pseudo pixel-level annotations to perform semantic segmentation tasks coupled with fully supervised approaches (e.g., Fully Convolutional Network). However, those approaches often provides incomplete supervision that mainly includes discriminative regions from the last convolutional layer. They may fail to capture regions of low- or intermediate-level features that may not be present in the last convolutional layer. To address the issue, we proposed a novel Multi-layered Self-Attention (Multi-SA) method that applies a self-attention module to multiple convolutional layers, and then stack feature maps from the self-attention layers to generate pseudo pixel-level annotations. We demonstrated that integrated feature maps from multiple self-attention layers produce higher coverage in semantic segmentation than using only the last convolutional layer through intensive experiments using standard benchmark datasets. 
    more » « less
  5. We propose to harness the potential of simulation for the semantic segmentation of real-world self-driving scenes in a domain generalization fashion. The segmentation network is trained without any data of target domains and tested on the unseen target domains. To this end, we propose a new approach of domain randomization and pyramid consistency to learn a model with high generalizability. First, we propose to randomize the synthetic images with the styles of real images in terms of visual appearances using auxiliary datasets, in order to effectively learn domain-invariant representations. Second, we further enforce pyramid consistency across different “stylized” images and within an image, in order to learn domaininvariant and scale-invariant features, respectively. Extensive experiments are conducted on the generalization from GTA and SYNTHIA to Cityscapes, BDDS and Mapillary; and our method achieves superior results over the stateof- the-art techniques. Remarkably, our generalization results are on par with or even better than those obtained by state-of-the-art simulation-to-real domain adaptation methods, which access the target domain data at training time. 
    more » « less