skip to main content


Title: Indicators of Participation: A Critical Review of Publicly-available STEM Data Sources
Several national reports convey the need for better data on the participation of underrepresented groups in engineering. The purpose of this paper is to 1) catalogue data sources that collect STEM-related information at a national level, and 2) critique their usefulness as it relates to informing efforts aimed at broadening participation of underrepresented racial/ethnic groups in engineering. To this end, we identified and reviewed multiple STEM-related data sources published by Child Trends, American Society of Engineering Education, National Center for Education Statistics, and the National Science Foundation. A critical look across these data sources revealed important themes related to reporting practices. While data at the compulsory education level related to preparedness via math and science performance indicators, data focused on higher education and workforce segments related to participation via overall numbers (e.g., degrees award). Data on gender and race intersections were largely missing. The implications of this study highlight the ways that publicly available data sources can be improved through more thorough, systematic collection, publication, and disaggregation of data.  more » « less
Award ID(s):
1647327
NSF-PAR ID:
10125378
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Collaborative Network for Engineering and Computing Diversity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
    more » « less
  2. Margonelli, L. (Ed.)
    Despite the success of exemplary public minority-serving institutions (MSIs) in broadening representation in science, technology, engineering, and mathematics (STEM) over the last 30 years, change at the national level has been disappointing. A recent National Academies of Sciences, Engineering, and Medicine (NASEM) consensus study report on advancing antiracism in STEM points to systemic barriers and racial bias as deeply entrenched impediments to bringing talented people from minoritized groups into STEM and enhancing their social mobility. In 2018, to accelerate systemic change, the National Science Foundation (NSF) initiated the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (INCLUDES) initiative, now named the Eddie Bernice Johnson INCLUDES Initiative. Challenging the United States to look beyond isolated programs to create change on a nationwide scale, this initiative aims to catalyze collaboration and build infrastructure to accelerate STEM participation and professional advancement of historically underrepresented groups such as African Americans, Hispanics, Native Alaskans, Native Americans, Native Hawaiians, Pacific Islanders, persons with disabilities, women and girls, and persons from economically disadvantaged backgrounds. While the initiative has offered valuable lessons in this process, it is essential that higher education and industry leaders, government and private funders, and other decisionmakers tackle inefficiencies and take on reforms if INCLUDES is to reach its full potential. This paper examines some of the exemplary practices of MSIs, as well as the theoretical underpinnings of the INCLUDE model, and provides concrete actions to maximize the impact of this initiative and others like it. The paper argues that revisiting theories of change, understanding the way STEM academic ecosystems work, and fully accounting for the role that leadership plays in driving change and accountability are all necessary to transform a system built upon historical inequities. 
    more » « less
  3. Freitag, Nancy E. (Ed.)
    The National Summer Undergraduate Research Program (NSURP) is a mentored summer research program in biosciences for undergraduate students from underrepresented backgrounds in science, technology, engineering, and mathematics (STEM). Conducted virtually over 8 weeks every summer starting in 2020, NSURP provides accessible and flexible research experiences to meet the needs of geographically diverse and schedule-constrained students. Drawing from mentee reporting and surveys conducted within the NSURP framework involving over 350 underrepresented minority undergraduate students over three cohorts (2020–2022), matched with mentors, this paper highlights the potential benefits of students participating in virtual mentored research experiences. In addition to increased access to quality research experiences for students who face travel or academic setting constraints, we found that virtual mentoring fosters cross-cultural collaborations, generates novel research questions, and expands professional networks. Moreover, this study emphasizes the role of virtual mentorship opportunities in fostering inclusivity and support for individuals from underrepresented groups in STEM fields. By overcoming barriers to full participation in the scientific community, virtual mentorship programs can create a more equitable and inclusive environment for aspiring researchers. This research contributes to the growing body of literature on the effectiveness and the potential of virtual research programs and mentorship opportunities in broadening participation and breaking down barriers in STEM education and careers.

    IMPORTANCE

    Summer Research Experiences for Undergraduates (REUs) are established to provide platforms for interest in scientific research and as tools for eventual matriculation to scientific graduate programs. Unfortunately, the COVID-19 pandemic forced the cancellation of in-person programs for 2020 and 2021, creating the need for alternative programming. The National Summer Undergraduate Research Project (NSURP) was created to provide a virtual option to REUs in microbiology to compensate for the pandemic-initiated loss of research opportunities. Although in-person REUs have since been restored, NSURP currently remains an option for those unable to travel to in-person programs in the first place due to familial, community, and/or monetary obligations. This study examines the effects of the program's first 3 years, documenting the students’ experiences, and suggests future directions and areas of study related to the impact of virtual research experiences on expanding and diversifying science, technology, engineering, and mathematics.

     
    more » « less
  4. null (Ed.)
    The National Science Foundation (NSF) Emerging Frontiers and Innovation (EFRI) Research Experience and Mentoring (REM) program nationally supports hands-on research and ongoing mentorship in STEM fields at various universities and colleges. The NSF EFRI-REM Mentoring Catalyst initiative was designed to build and train these robust, interactive research mentoring communities that are composed of faculty, postdoctoral associates and graduate student mentors, to broaden participation of underrepresented groups in STEM research who are funded through NSF EFRI-REM. This work-in-progress paper describes the first five years of this initiative, where interactive training programs were implemented from multiple frameworks of effective mentoring. Principal investigators, postdoctoral associates and graduate students are often expected to develop and establish mentoring plans without any formal training in how to be effective mentors. Since the start of this initiative, over 300 faculty, postdoctoral associates and graduate students have been trained on promising practices, strategies, and tools to enhance their research mentoring experiences. In addition to formal mentor training, opportunities to foster a community of practice with current mentors and past mentor training participants (sage mentors) were provided. During these interactions, promising mentoring practices were shared to benefit the mentors and the different mentoring populations that the EFRI-REMs serve. The community of practice connected a diverse group of institutions and faculty to help the EFRI-REM community in its goal of broadening participation across a range of STEM disciplines. Those institutions are then able to discuss, distill and disseminate best practices around the mentoring of participants through targeted mentored training beyond the EFRI-REM at their home institutions. Not only does the EFRI-REM Catalyst initiative focus on broadening participation via strategic training of research mentors, it also empowers mentees, including undergraduate and graduate students and postdoctoral associates, in their research experiences through an entering research undergraduate course and formal mentoring training workshops. Future expansion to other academic units (e.g., colleges, universities) builds on the research collaborations and the initiatives developed and presented in this work-in-progress paper. A long-term goal is to provide insights via collaborative meetings (e.g., webinars, presentations) for STEM and related faculty who are assembling an infrastructure (e.g., proposals for the ERFI-REM program) across a range of research structures. In summary, this work-in-progress paper provides a description of the design and implementation of this initiative, preliminary findings, expanding interactions to other NSF supported Engineering Research Centers, and the future directions of the EFRI-REM Mentoring Catalyst initiative. 
    more » « less
  5. The goal of Project STEMulate, a National Science Foundation ITEST study (DRL 1657625), was to develop, implement, and evaluate a program that fosters success in STEM for underserved and underrepresented high school students. The project was implemented at three sites of the Department of Education Upward Bound Program in Hawaiˋi. Project STEMulate delivered teacher training on Problem-Based Learning curriculum to ensure students were motivated and empowered, and to support STEM- related postsecondary educational success of Hawaiian and Pacific Islander students. A critical design goal of the program was to introduce teaching and learning strategies and processes that were more relevant to underrepresented youth populations than those offered in typical high schools to provide opportunities and to increase participation in the STEM study and career trajectory, something all too often out of mind and scope of these students. This study reports on three years of mixed methods summer academy data on both student and teacher learning outcomes. Teacher dispositions, evidenced through data from interviews, observations, and multi-point surveys improved in a majority of the dimensions, including teaching inquiry-based approaches, integrating technology, and STEM career knowledge and awareness. Student motivation, Science self-efficacy, and STEM career interest, evidenced from similar data sources, increased as well. Finally, we discuss the larger implications of extending this work to impact similar populations elsewhere of isolated, under- resourced and under-exposed youth with these proven strategies. 
    more » « less