skip to main content


Title: The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization
Motivated by applications in Optimization, Game Theory, and the training of Generative Adversarial Networks, the convergence properties of first order methods in min-max problems have received extensive study. It has been recognized that they may cycle, and there is no good understanding of their limit points when they do not. When they converge, do they converge to local min-max solutions? We characterize the limit points of two basic first order methods, namely Gradient Descent/Ascent (GDA) and Optimistic Gradient Descent Ascent (OGDA). We show that both dynamics avoid unstable critical points for almost all initializations. Moreover, for small step sizes and under mild assumptions, the set of \{OGDA\}-stable critical points is a superset of \{GDA\}-stable critical points, which is a superset of local min-max solutions (strict in some cases). The connecting thread is that the behavior of these dynamics can be studied from a dynamical systems perspective.  more » « less
Award ID(s):
1741137
NSF-PAR ID:
10125385
Author(s) / Creator(s):
;
Date Published:
Journal Name:
32nd Annual Conference on Neural Information Processing Systems (NIPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by applications in Optimization, Game Theory, and the training of Generative Adversarial Networks, the convergence properties of first order methods in min-max problems have received extensive study. It has been recognized that they may cycle, and there is no good understanding of their limit points when they do not. When they converge, do they converge to local min-max solutions? We characterize the limit points of two basic first order methods, namely Gradient Descent/Ascent (GDA) and Optimistic Gradient Descent Ascent (OGDA). We show that both dynamics avoid unstable critical points for almost all initializations. Moreover, for small step sizes and under mild assumptions, the set of \{OGDA\}-stable critical points is a superset of \{GDA\}-stable critical points, which is a superset of local min-max solutions (strict in some cases). The connecting thread is that the behavior of these dynamics can be studied from a dynamical systems perspective. 
    more » « less
  2. null (Ed.)
    A broad class of unsupervised deep learning methods such as Generative Adversarial Networks (GANs) involve training of overparameterized models where the number of parameters of the model exceeds a certain threshold. Indeed, most successful GANs used in practice are trained using overparameterized generator and discriminator networks, both in terms of depth and width. A large body of work in supervised learning have shown the importance of model overparameterization in the convergence of the gradient descent (GD) to globally optimal solutions. In contrast, the unsupervised setting and GANs in particular involve non-convex concave mini-max optimization problems that are often trained using Gradient Descent/Ascent (GDA). The role and benefits of model overparameterization in the convergence of GDA to a global saddle point in non-convex concave problems is far less understood. In this work, we present a comprehensive analysis of the importance of model overparameterization in GANs both theoretically and empirically. We theoretically show that in an overparameterized GAN model with a 1-layer neural network generator and a linear discriminator, GDA converges to a global saddle point of the underlying non-convex concave min-max problem. To the best of our knowledge, this is the first result for global convergence of GDA in such settings. Our theory is based on a more general result that holds for a broader class of nonlinear generators and discriminators that obey certain assumptions (including deeper generators and random feature discriminators). Our theory utilizes and builds upon a novel connection with the convergence analysis of linear timevarying dynamical systems which may have broader implications for understanding the convergence behavior of GDA for non-convex concave problems involving overparameterized models. We also empirically study the role of model overparameterization in GANs using several large-scale experiments on CIFAR-10 and Celeb-A datasets. Our experiments show that overparameterization improves the quality of generated samples across various model architectures and datasets. Remarkably, we observe that overparameterization leads to faster and more stable convergence behavior of GDA across the board. 
    more » « less
  3. null (Ed.)
    Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks, recent work of Daskalakis et al \cite{DISZ17} and follow-up work of Liang and Stokes \cite{LiangS18} have established that a variant of the widely used Gradient Descent/Ascent procedure, called "Optimistic Gradient Descent/Ascent (OGDA)", exhibits last-iterate convergence to saddle points in {\em unconstrained} convex-concave min-max optimization problems. We show that the same holds true in the more general problem of {\em constrained} min-max optimization under a variant of the no-regret Multiplicative-Weights-Update method called "Optimistic Multiplicative-Weights Update (OMWU)". This answers an open question of Syrgkanis et al \cite{SALS15}. The proof of our result requires fundamentally different techniques from those that exist in no-regret learning literature and the aforementioned papers. We show that OMWU monotonically improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized) min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we show that OMWU is locally (asymptotically) stable converging to the exact solution. We believe that our techniques will be useful in the analysis of the last iterate of other learning algorithms. 
    more » « less
  4. Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks, recent work of Daskalakis et al~\cite{DISZ17} and follow-up work of Liang and Stokes~\cite{LiangS18} have established that a variant of the widely used Gradient Descent/Ascent procedure, called "Optimistic Gradient Descent/Ascent (OGDA)", exhibits last-iterate convergence to saddle points in {\em unconstrained} convex-concave min-max optimization problems. We show that the same holds true in the more general problem of {\em constrained} min-max optimization under a variant of the no-regret Multiplicative-Weights-Update method called "Optimistic Multiplicative-Weights Update (OMWU)". This answers an open question of Syrgkanis et al~\cite{SALS15}. The proof of our result requires fundamentally different techniques from those that exist in no-regret learning literature and the aforementioned papers. We show that OMWU monotonically improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized) min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we show that OMWU becomes a contracting map converging to the exact solution. We believe that our techniques will be useful in the analysis of the last iterate of other learning algorithms. 
    more » « less
  5. Despite the established convergence theory of Optimistic Gradient Descent Ascent (OGDA) and Extragradient (EG) methods for the convex-concave minimax problems, little is known about the theoretical guarantees of these methods in nonconvex settings. To bridge this gap, for the first time, this paper establishes the convergence of OGDA and EG methods under the nonconvex-strongly-concave (NC-SC) and nonconvex-concave (NC-C) settings by providing a unified analysis through the lens of single-call extra-gradient methods. We further establish lower bounds on the convergence of GDA/OGDA/EG, shedding light on the tightness of our analysis. We also conduct experiments supporting our theoretical results. We believe our results will advance the theoretical understanding of OGDA and EG methods for solving complicated nonconvex minimax real-world problems, e.g., Generative Adversarial Networks (GANs) or robust neural networks training. 
    more » « less