skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Last-Iterate Convergence: Zero-Sum Games and Constrained Min-Max Optimization
Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks, recent work of Daskalakis et al~\cite{DISZ17} and follow-up work of Liang and Stokes~\cite{LiangS18} have established that a variant of the widely used Gradient Descent/Ascent procedure, called "Optimistic Gradient Descent/Ascent (OGDA)", exhibits last-iterate convergence to saddle points in {\em unconstrained} convex-concave min-max optimization problems. We show that the same holds true in the more general problem of {\em constrained} min-max optimization under a variant of the no-regret Multiplicative-Weights-Update method called "Optimistic Multiplicative-Weights Update (OMWU)". This answers an open question of Syrgkanis et al~\cite{SALS15}. The proof of our result requires fundamentally different techniques from those that exist in no-regret learning literature and the aforementioned papers. We show that OMWU monotonically improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized) min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we show that OMWU becomes a contracting map converging to the exact solution. We believe that our techniques will be useful in the analysis of the last iterate of other learning algorithms.  more » « less
Award ID(s):
1741137
PAR ID:
10125388
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Innovations in Theoretical Computer Science
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Motivated by applications in Game Theory, Optimization, and Generative Adversarial Networks, recent work of Daskalakis et al \cite{DISZ17} and follow-up work of Liang and Stokes \cite{LiangS18} have established that a variant of the widely used Gradient Descent/Ascent procedure, called "Optimistic Gradient Descent/Ascent (OGDA)", exhibits last-iterate convergence to saddle points in {\em unconstrained} convex-concave min-max optimization problems. We show that the same holds true in the more general problem of {\em constrained} min-max optimization under a variant of the no-regret Multiplicative-Weights-Update method called "Optimistic Multiplicative-Weights Update (OMWU)". This answers an open question of Syrgkanis et al \cite{SALS15}. The proof of our result requires fundamentally different techniques from those that exist in no-regret learning literature and the aforementioned papers. We show that OMWU monotonically improves the Kullback-Leibler divergence of the current iterate to the (appropriately normalized) min-max solution until it enters a neighborhood of the solution. Inside that neighborhood we show that OMWU is locally (asymptotically) stable converging to the exact solution. We believe that our techniques will be useful in the analysis of the last iterate of other learning algorithms. 
    more » « less
  2. From optimal transport to robust dimensionality reduction, a plethora of machine learning applications can be cast into the min-max optimization problems over Riemannian manifolds. Though many min-max algorithms have been analyzed in the Euclidean setting, it has proved elusive to translate these results to the Riemannian case. Zhang et al. [2022] have recently shown that geodesic convex concave Riemannian problems always admit saddle-point solutions. Inspired by this result, we study whether a performance gap between Riemannian and optimal Euclidean space convex-concave algorithms is necessary. We answer this question in the negative—we prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate convergence at a linear rate in the geodesically strongly-convex-concave case, matching the Euclidean result. Our results also extend to the stochastic or non-smooth case where RCEG and Riemanian gradient ascent descent (RGDA) achieve near-optimal convergence rates up to factors depending on curvature of the manifold. 
    more » « less
  3. Motivated by applications in Optimization, Game Theory, and the training of Generative Adversarial Networks, the convergence properties of first order methods in min-max problems have received extensive study. It has been recognized that they may cycle, and there is no good understanding of their limit points when they do not. When they converge, do they converge to local min-max solutions? We characterize the limit points of two basic first order methods, namely Gradient Descent/Ascent (GDA) and Optimistic Gradient Descent Ascent (OGDA). We show that both dynamics avoid unstable critical points for almost all initializations. Moreover, for small step sizes and under mild assumptions, the set of \{OGDA\}-stable critical points is a superset of \{GDA\}-stable critical points, which is a superset of local min-max solutions (strict in some cases). The connecting thread is that the behavior of these dynamics can be studied from a dynamical systems perspective. 
    more » « less
  4. Motivated by applications in Optimization, Game Theory, and the training of Generative Adversarial Networks, the convergence properties of first order methods in min-max problems have received extensive study. It has been recognized that they may cycle, and there is no good understanding of their limit points when they do not. When they converge, do they converge to local min-max solutions? We characterize the limit points of two basic first order methods, namely Gradient Descent/Ascent (GDA) and Optimistic Gradient Descent Ascent (OGDA). We show that both dynamics avoid unstable critical points for almost all initializations. Moreover, for small step sizes and under mild assumptions, the set of \{OGDA\}-stable critical points is a superset of \{GDA\}-stable critical points, which is a superset of local min-max solutions (strict in some cases). The connecting thread is that the behavior of these dynamics can be studied from a dynamical systems perspective. 
    more » « less
  5. Min-max optimization is emerging as a key framework for analyzing problems of robustness to strategically and adversarially generated data. We propose the random reshuffling-based gradient-free Optimistic Gradient Descent-Ascent algorithm for solving convex-concave min-max problems with finite sum structure. We prove that the algorithm enjoys the same convergence rate as that of zeroth-order algorithms for convex minimization problems. We deploy the algorithm to solve the distributionally robust strategic classification problem, where gradient information is not readily available, by reformulating the latter into a finite dimensional convex concave min-max problem. Through illustrative simulations, we observe that our proposed approach learns models that are simultaneously robust against adversarial distribution shifts and strategic decisions from the data sources, and outperforms existing methods from the strategic classification literature. 
    more » « less