skip to main content

Title: Novel Data Assimilation Algorithm for Nearshore Bathymetry

It can be expensive and difficult to collect direct bathymetry data for nearshore regions, especially in high-energy locations where there are temporally and spatially varying bathymetric features like sandbars. As a result, there has been increasing interest in remote assessment techniques for estimating bathymetry. Recent efforts have combined Kalman filter–based techniques with indirect video-based observations for bathymetry inversion. Here, we estimate nearshore bathymetry by utilizing observed wave celerity and wave height, which are related to bathymetry through phase-averaged wave dynamics. We present a modified compressed-state Kalman filter (CSKF) method, a fast and scalable Kalman filter method for linear and nonlinear problems with large numbers of unknowns and measurements, and apply it to two nearshore bathymetry estimation problems. To illustrate the robustness and accuracy of our method, we compare its performance with that of two ensemble-based approaches on twin bathymetry estimation problems with profiles based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, North Carolina. We first consider an estimation problem for a temporally constant bathymetry profile. Then we estimate bathymetry as it evolves in time. Our results indicate that the CSKF method is more accurate and robust than the ensemble-based methods with the same computational cost. The superior performance is due to the optimal low-rank representation of the covariance matrices.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Page Range / eLocation ID:
p. 699-715
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For data assimilation to provide faithful state estimates for dynamical models, specifications of observation uncertainty need to be as accurate as possible. Innovation-based methods based on Desroziers diagnostics, are commonly used to estimate observation uncertainty, but such methods can depend greatly on the prescribed background uncertainty. For ensemble data assimilation, this uncertainty comes from statistics calculated from ensemble forecasts, which require inflation and localization to address under sampling. In this work, we use an ensemble Kalman filter (EnKF) with a low-dimensional Lorenz model to investigate the interplay between the Desroziers method and inflation. Two inflation techniques are used for this purpose: 1) a rigorously tuned fixed multiplicative scheme and 2) an adaptive state-space scheme. We document how inaccuracies in observation uncertainty affect errors in EnKF posteriors and study the combined impacts of misspecified initial observation uncertainty, sampling error, and model error on Desroziers estimates. We find that whether observation uncertainty is over- or underestimated greatly affects the stability of data assimilation and the accuracy of Desroziers estimates and that preference should be given to initial overestimates. Inline estimates of Desroziers tend to remove the dependence between ensemble spread–skill and the initially prescribed observation error. In addition, we find that the inclusion of model error introduces spurious correlations in observation uncertainty estimates. Further, we note that the adaptive inflation scheme is less robust than fixed inflation at mitigating multiple sources of error. Last, sampling error strongly exacerbates existing sources of error and greatly degrades EnKF estimates, which translates into biased Desroziers estimates of observation error covariance.

    Significance Statement

    To generate accurate predictions of various components of the Earth system, numerical models require an accurate specification of state variables at our current time. This step adopts a probabilistic consideration of our current state estimate versus information provided from environmental measurements of the true state. Various strategies exist for estimating uncertainty in observations within this framework, but are sensitive to a host of assumptions, which are investigated in this study.

    more » « less
  2. Abstract Particle filters avoid parametric estimates for Bayesian posterior densities, which alleviates Gaussian assumptions in nonlinear regimes. These methods, however, are more sensitive to sampling errors than Gaussian-based techniques such as ensemble Kalman filters. A recent study by the authors introduced an iterative strategy for particle filters that match posterior moments—where iterations improve the filter’s ability to draw samples from non-Gaussian posterior densities. The iterations follow from a factorization of particle weights, providing a natural framework for combining particle filters with alternative filters to mitigate the impact of sampling errors. The current study introduces a novel approach to forming an adaptive hybrid data assimilation methodology, exploiting the theoretical strengths of nonparametric and parametric filters. At each data assimilation cycle, the iterative particle filter performs a sequence of updates while the prior sample distribution is non-Gaussian, then an ensemble Kalman filter provides the final adjustment when Gaussian distributions for marginal quantities are detected. The method employs the Shapiro–Wilk test to determine when to make the transition between filter algorithms, which has outstanding power for detecting departures from normality. Experiments using low-dimensional models demonstrate that the approach has a significant value, especially for nonhomogeneous observation networks and unknown model process errors. Moreover, hybrid factors are extended to consider marginals of more than one collocated variables using a test for multivariate normality. Findings from this study motivate the use of the proposed method for geophysical problems characterized by diverse observation networks and various dynamic instabilities, such as numerical weather prediction models. Significance Statement Data assimilation statistically processes observation errors and model forecast errors to provide optimal initial conditions for the forecast, playing a critical role in numerical weather forecasting. The ensemble Kalman filter, which has been widely adopted and developed in many operational centers, assumes Gaussianity of the prior distribution and solves a linear system of equations, leading to bias in strong nonlinear regimes. On the other hand, particle filters avoid many of those assumptions but are sensitive to sampling errors and are computationally expensive. We propose an adaptive hybrid strategy that combines their advantages and minimizes the disadvantages of the two methods. The hybrid particle filter–ensemble Kalman filter is achieved with the Shapiro–Wilk test to detect the Gaussianity of the ensemble members and determine the timing of the transition between these filter updates. Demonstrations in this study show that the proposed method is advantageous when observations are heterogeneous and when the model has an unknown bias. Furthermore, by extending the statistical hypothesis test to the test for multivariate normality, we consider marginals of more than one collocated variable. These results encourage further testing for real geophysical problems characterized by various dynamic instabilities, such as real numerical weather prediction models. 
    more » « less
  3. Abstract

    Energetic particle precipitation (EPP) is a key loss mechanism for radiation belt particles. Quantification of the precipitation loss rate feeds into the electron lifetimes used by radiation belt models and is needed to improve understanding of radiation belt dynamics. EPP deposits most of its energy in theD‐region ionosphere, a layer so weakly ionized that it is not observed using standard ionosphere measurement techniques. However, very low frequency (VLF) radio signals propagate great distances because of the naturally occurring waveguide formed by Earth’s surface and theD‐region. If the ground conductivity is known along the propagation path to a receiver, then the amplitude and phase of a VLF transmitter signal can be used to infer the average conductivity of theD‐region ionosphere. This article simulates the propagation of narrowband VLF signals through realistic ionosphere profiles enhanced by EPP. By using a distributed array of VLF receivers, the observations can be simultaneously inverted to estimate the spatial extent of a precipitation patch. These images of the ionosphere are generated using the local ensemble transform Kalman filter. We demonstrate this method with several simulated observation experiments, including four EPP events. Precipitation patches are identified in daytime, but accurate estimation of nighttime ionospheres remains a challenge.

    more » « less
  4. Abstract

    Offshore sensor networks like DONET and S‐NET, providing real‐time estimates of wave height through measurements of pressure changes along the seafloor, are revolutionizing local tsunami early warning. Data assimilation techniques, in particular, optimal interpolation (OI), provide real‐time wavefield reconstructions and forecasts. Here we explore an alternative assimilation method, the ensemble Kalman filter (EnKF), and compare it to OI. The methods are tested on a scenario tsunami in the Cascadia subduction zone, obtained from a 2‐D coupled dynamic earthquake and tsunami simulation. Data assimilation uses a 1‐D linear long‐wave model. We find that EnKF achieves more accurate and stable forecasts than OI, both at the coast and across the entire domain, especially for large station spacing. Although EnKF is more computationally expensive than OI, with development in high‐performance computing, it is a promising candidate for real‐time local tsunami early warning.

    more » « less
  5. null (Ed.)
    Abstract The ensemble Kalman filter (EnKF) is a popular technique for data assimilation in high-dimensional nonlinear state-space models. The EnKF represents distributions of interest by an ensemble, which is a form of dimension reduction that enables straightforward forecasting even for complicated and expensive evolution operators. However, the EnKF update step involves estimation of the forecast covariance matrix based on the (often small) ensemble, which requires regularization. Many existing regularization techniques rely on spatial localization, which may ignore long-range dependence. Instead, our proposed approach assumes a sparse Cholesky factor of the inverse covariance matrix, and the nonzero Cholesky entries are further regularized. The resulting method is highly flexible and computationally scalable. In our numerical experiments, our approach was more accurate and less sensitive to misspecification of tuning parameters than tapering-based localization. 
    more » « less