Learning causal structure from observational data has attracted much attention,and it is notoriously challenging to find the underlying structure in the presenceof confounders (hidden direct common causes of two variables). In this paper,by properly leveraging the non-Gaussianity of the data, we propose to estimatethe structure over latent variables with the so-called Triad constraints: we design a form of "pseudo-residual" from three variables, and show that when causal relations are linear and noise terms are non-Gaussian, the causal direction between the latent variables for the three observed variables is identifiable by checking a certain kind of independence relationship. In other words, the Triad constraints help us to locate latent confounders and determine the causal direction between them. This goes far beyond the Tetrad constraints and reveals more information about the underlying structure from non-Gaussian data. Finally, based on the Triad constraints, we develop a two-step algorithm to learn the causal structure corresponding to measurement models. Experimental results on both synthetic and real data demonstrate the effectiveness and reliability of our method.
more »
« less
Multi-domain Causal Structure Learning in Linear Systems
We study the problem of causal structure learning in linear systems from observational data given in multiple domains, across which the causal coefficients and/or the distribution of the exogenous noises may vary. The main tool used in our approach is the principle that in a causally sufficient system, the causal modules, as well as their included parameters, change independently across domains. We first introduce our approach for finding causal direction in a system comprising two variables and propose efficient methods for identifying causal direction. Then we generalize our methods to causal structure learning in networks of variables. Most of previous work in structure learning from multi-domain data assume that certain types of invariance are held in causal modules across domains. Our approach unifies the idea in those works and generalizes to the case that there is no such invariance across the domains. Our proposed methods are generally capable of identifying causal direction from fewer than ten domains. When the invariance property holds, two domains are generally sufficient.
more »
« less
- Award ID(s):
- 1829681
- PAR ID:
- 10125695
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Page Range / eLocation ID:
- 6266 - 6276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Identification of causal direction between a causal-effect pair from observed data has recently attracted much attention. Various methods based on functional causal models have been proposed to solve this problem, by assuming the causal process satisfies some (structural) constraints and showing that the reverse direction violates such constraints. The nonlinear additive noise model has been demonstrated to be effective for this purpose, but the model class is not transitive--even if each direct causal relation follows this model, indirect causal influences, which result from omitted intermediate causal variables and are frequently encountered in practice, do not necessarily follow the model constraints; as a consequence, the nonlinear additive noise model may fail to correctly discover causal direction. In this work, we propose a cascade nonlinear additive noise model to represent such causal influences--each direct causal relation follows the nonlinear additive noise model but we observe only the initial cause and final effect. We further propose a method to estimate the model, including the unmeasured intermediate variables, from data, under the variational auto-encoder framework. Our theoretical results show that with our model, causal direction is identifiable under suitable technical conditions on the data generation process. Simulation results illustrate the power of the proposed method in identifying indirect causal relations across various settings, and experimental results on real data suggest that the proposed model and method greatly extend the applicability of causal discovery based on functional causal models in nonlinear cases.more » « less
-
Causal discovery from a set of observations is one of the fundamental problems across several disciplines. For continuous variables, recently a number of causal discovery methods have demonstrated their effectiveness in distinguishing the cause from effect by exploring certain properties of the conditional distribution, but causal discovery on categorical data still remains to be a challenging problem, because it is generally not easy to find a compact description of the causal mechanism for the true causal direction. In this paper we make an attempt to find a way to solve this problem by assuming a two-stage causal process: the first stage maps the cause to a hidden variable of a lower cardinality, and the second stage generates the effect from the hidden representation. In this way, the causal mechanism admits a simple yet compact representation. We show that under this model, the causal direction is identifiable under some weak conditions on the true causal mechanism. We also provide an effective solution to recover the above hidden compact representation within the likelihood framework. Empirical studies verify the effectiveness of the proposed approach on both synthetic and real-world data.more » « less
-
Cassio de Campos, Marloes H. (Ed.)Causal analyses of longitudinal data generally assume that the qualitative causal structure relating variables remains invariant over time. In structured systems that transition between qualitatively differ- ent states in discrete time steps, such an approach is deficient on two fronts. First, time-varying variables may have state-specific causal relationships that need to be captured. Second, an intervention can result in state transitions downstream of the intervention different from those actually observed in the data. In other words, interventions may counter- factually alter the subsequent temporal evolution of the system. We introduce a generalization of causal graphical models, Path Dependent Structural Equation Models (PDSEMs), that can describe such systems. We show how causal inference may be performed in such models and illustrate its use in simulations and data obtained from a septoplasty surgical procedure.more » « less
-
Capturing the underlying structural causal relations represented by Directed Acyclic Graphs (DAGs) has been a fundamental task in various AI disciplines. Causal DAG learning via the continuous optimization framework has recently achieved promising performance in terms of accuracy and efficiency. However, most methods make strong assumptions of homoscedastic noise, i.e., exogenous noises have equal variances across variables, observations, or even both. The noises in real data usually violate both assumptions due to the biases introduced by different data collection processes. To address the heteroscedastic noise issue, we introduce relaxed implementable sufficient conditions and prove the identifiability of a general class of SEM subject to those conditions. Based on the identifiable general SEM, we propose a novel formulation for DAG learning which accounts for the noise variance variation across variables and observations. We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties and learn a causal DAG from data with heteroscedastic variables noise under varying variance. We show significant empirical gains of the proposed approaches over state-of-the-art methods on both synthetic data and real data.more » « less
An official website of the United States government

