skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective Causal Discovery under Identifiable Heteroscedastic Noise Model
Capturing the underlying structural causal relations represented by Directed Acyclic Graphs (DAGs) has been a fundamental task in various AI disciplines. Causal DAG learning via the continuous optimization framework has recently achieved promising performance in terms of accuracy and efficiency. However, most methods make strong assumptions of homoscedastic noise, i.e., exogenous noises have equal variances across variables, observations, or even both. The noises in real data usually violate both assumptions due to the biases introduced by different data collection processes. To address the heteroscedastic noise issue, we introduce relaxed implementable sufficient conditions and prove the identifiability of a general class of SEM subject to those conditions. Based on the identifiable general SEM, we propose a novel formulation for DAG learning which accounts for the noise variance variation across variables and observations. We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties and learn a causal DAG from data with heteroscedastic variables noise under varying variance. We show significant empirical gains of the proposed approaches over state-of-the-art methods on both synthetic data and real data.  more » « less
Award ID(s):
2236026
PAR ID:
10513288
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
15
ISSN:
2159-5399
Page Range / eLocation ID:
16486 to 16494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural causal models (SCMs) are widely used in various disciplines to represent causal relationships among variables in complex systems. Unfortunately, the true underlying directed acyclic graph (DAG) structure is often unknown, and determining it from observational or interventional data remains a challenging task. However, in many situations, the end goal is to identify changes (shifts) in causal mechanisms between related SCMs rather than recovering the entire underlying DAG structure. Examples include analyzing gene regulatory network structure changes between healthy and cancerous individuals or understanding variations in biological pathways under different cellular contexts. This paper focuses on identifying functional mechanism shifts in two or more related SCMs over the same set of variables -- without estimating the entire DAG structure of each SCM. Prior work under this setting assumed linear models with Gaussian noises; instead, in this work we assume that each SCM belongs to the more general class of nonlinear additive noise models (ANMs). A key contribution of this work is to show that the Jacobian of the score function for the mixture distribution allows for identification of shifts in general non-parametric functional mechanisms. Once the shifted variables are identified, we leverage recent work to estimate the structural differences, if any, for the shifted variables. Experiments on synthetic and real-world data are provided to showcase the applicability of this approach. 
    more » « less
  2. Abstract Many real-world decision-making tasks require learning causal relationships between a set of variables. Traditional causal discovery methods, however, require that all variables are observed, which is often not feasible in practical scenarios. Without additional assumptions about the unobserved variables, it is not possible to recover any causal relationships from observational data. Fortunately, in many applied settings, additional structure among the confounders can be expected. In particular, pervasive confounding is commonly encountered and has been utilised for consistent causal estimation in linear causal models. In this article, we present a provably consistent method to estimate causal relationships in the nonlinear, pervasive confounding setting. The core of our procedure relies on the ability to estimate the confounding variation through a simple spectral decomposition of the observed data matrix. We derive a DAG score function based on this insight, prove its consistency in recovering a correct ordering of the DAG, and empirically compare it to previous approaches. We demonstrate improved performance on both simulated and real datasets by explicitly accounting for both confounders and nonlinear effects. 
    more » « less
  3. Real-world data often violates the equal-variance assumption (homoscedasticity), making it essential to account for heteroscedastic noise in causal discovery. In this work, we explore heteroscedastic symmetric noise models (HSNMs), where the effect Y is modeled as Y = f(X) + σ(X)N, with X as the cause and N as independent noise following a symmetric distribution. We introduce a novel criterion for identifying HSNMs based on the skewness of the score (i.e., the gradient of the log density) of the data distribution. This criterion establishes a computationally tractable measurement that is zero in the causal direction but nonzero in the anticausal direction, enabling the causal direction discovery. We extend this skewness-based criterion to the multivariate setting and propose SkewScore, an algorithm that handles heteroscedastic noise without requiring the extraction of exogenous noise. We also conduct a case study on the robustness of SkewScore in a bivariate model with a latent confounder, providing theoretical insights into its performance. Empirical studies further validate the effectiveness of the proposed method. 
    more » « less
  4. Structural causal models (SCMs) are widely used in various disciplines to repre- sent causal relationships among variables in complex systems. Unfortunately, the underlying causal structure is often unknown, and estimating it from data remains a challenging task. In many situations, however, the end goal is to localize the changes (shifts) in the causal mechanisms between related datasets instead of learn- ing the full causal structure of the individual datasets. Some applications include root cause analysis, analyzing gene regulatory network structure changes between healthy and cancerous individuals, or explaining distribution shifts. This paper focuses on identifying the causal mechanism shifts in two or more related datasets over the same set of variables—without estimating the entire DAG structure of each SCM. Prior work under this setting assumed linear models with Gaussian noises; instead, in this work we assume that each SCM belongs to the more general class of nonlinear additive noise models (ANMs). A key technical contribution of this work is to show that the Jacobian of the score function for the mixture distribution allows for the identification of shifts under general non-parametric functional mechanisms. Once the shifted variables are identified, we leverage recent work to estimate the structural differences, if any, for the shifted variables. Experiments on synthetic and real-world data are provided to showcase the applicability of this approach. Code implementing the proposed method is open-source and publicly available at https://github.com/kevinsbello/iSCAN. 
    more » « less
  5. null (Ed.)
    We develop a framework for learning sparse nonparametric directed acyclic graphs (DAGs) from data. Our approach is based on a recent algebraic characterization of DAGs that led to a fully continuous program for score-based learning of DAG models parametrized by a linear structural equation model (SEM). We extend this algebraic characterization to nonparametric SEM by leveraging nonparametric sparsity based on partial derivatives, resulting in a continuous optimization problem that can be applied to a variety of nonparametric and semiparametric models including GLMs, additive noise models, and index models as special cases. Unlike existing approaches that require specific modeling choices, loss functions, or algorithms, we present a completely general framework that can be applied to general nonlinear models (e.g. without additive noise), general differentiable loss functions, and generic black-box optimization routines. 
    more » « less