In real-world phenomena which involve mutual influence or causal effects between interconnected units, equilibrium states are typically represented with cycles in graphical models. An expressive class of graphical models, relational causal models, can represent and reason about complex dynamic systems exhibiting such cycles or feedback loops. Existing cyclic causal discovery algorithms for learning causal models from observational data assume that the data instances are independent and identically distributed which makes them unsuitable for relational causal models. At the same time, causal discovery algorithms for relational causal models assume acyclicity. In this work, we examine the necessary and sufficient conditions under which a constraint-based relational causal discovery algorithm is sound and complete for cyclic relational causal models. We introduce relational acyclification, an operation specifically designed for relational models that enables reasoning about the identifiability of cyclic relational causal models. We show that under the assumptions of relational acyclification and sigma-faithfulness, the relational causal discovery algorithm RCD is sound and complete for cyclic relational models. We present experimental results to support our claim.
more »
« less
Likelihood-Free Overcomplete ICA and Applications in Causal Discovery
Causal discovery witnessed significant progress over the past decades. In particular,many recent causal discovery methods make use of independent, non-Gaussian noise to achieve identifiability of the causal models. Existence of hidden direct common causes, or confounders, generally makes causal discovery more difficult;whenever they are present, the corresponding causal discovery algorithms canbe seen as extensions of overcomplete independent component analysis (OICA). However, existing OICA algorithms usually make strong parametric assumptions on the distribution of independent components, which may be violated on real data, leading to sub-optimal or even wrong solutions. In addition, existing OICA algorithms rely on the Expectation Maximization (EM) procedure that requires computationally expensive inference of the posterior distribution of independent components. To tackle these problems, we present a Likelihood-Free Overcomplete ICA algorithm (LFOICA1) that estimates the mixing matrix directly byback-propagation without any explicit assumptions on the density function of independent components. Thanks to its computational efficiency, the proposed method makes a number of causal discovery procedures much more practically feasible.For illustrative purposes, we demonstrate the computational efficiency and efficacy of our method in two causal discovery tasks on both synthetic and real data.
more »
« less
- Award ID(s):
- 1829681
- PAR ID:
- 10125764
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Finding overcomplete latent representations of data has applications in data analysis, signal processing, machine learning, theoretical neuroscience and many other fields. In an overcomplete representation, the number of latent features exceeds the data dimensionality, which is useful when the data is undersampled by the measurements (compressed sensing or information bottlenecks in neural systems) or composed from multiple complete sets of linear features, each spanning the data space. Independent Components Analysis (ICA) is a linear technique for learning sparse latent representations, which typically has a lower computational cost than sparse coding, a linear generative model which requires an iterative, nonlinear inference step. While well suited for finding complete representations, we show that overcompleteness poses a challenge to existing ICA algorithms. Specifically, the coherence control used in existing ICA and other dictionary learning algorithms, necessary to prevent the formation of duplicate dictionary features, is ill-suited in the overcomplete case. We show that in the overcomplete case, several existing ICA algorithms have undesirable global minima that maximize coherence. We provide a theoretical explanation of these failures and, based on the theory, propose improved coherence control costs for overcomplete ICA algorithms. Further, by comparing ICA algorithms to the computationally more expensive sparse coding on synthetic data, we show that the limited applicability of overcomplete, linear inference can be extended with the proposed cost functions. Finally, when trained on natural images, we show that the coherence control biases the exploration of the data manifold, sometimes yielding suboptimal, coherent solutions. All told, this study contributes new insights into and methods for coherence control for linear ICA, some of which are applicable to many other nonlinear models.more » « less
-
Understanding causal relationships between variables is fundamental across scientific disciplines. Most causal discovery algorithms rely on two key assump- tions: (i) all variables are observed, and (ii) the underlying causal graph is acyclic. While these assumptions simplify theoretical analysis, they are often violated in real-world systems, such as biological networks. Existing methods that account for confounders either assume linearity or struggle with scalability. To address these limitations, we propose DCCD-CONF, a novel framework for differentiable learning of nonlinear cyclic causal graphs in the presence of unmeasured confounders using interventional data. Our approach alternates between optimizing the graph structure and estimating the confounder distribution by maximizing the log-likelihood of the data. Through experiments on synthetic data and real-world gene perturbation datasets, we show that DCCD-CONF outperforms state-of-the-art methods in both causal graph recovery and confounder identification. Additionally, we provide consistency guarantees for our framework, reinforcing its theoretical soundness.more » « less
-
In constraint-based causal discovery, the existing algorithms systematically use a series of conditional independence (CI) relations observed in the data to recover an equivalence class of causal graphs in the large sample limit. One limitation of these algorithms is that CI tests lose statistical power as conditioning set size increases with finite samples. Recent research proposes to limit the conditioning set size for robust causal discovery. However, the existing algorithms require exhaustive testing of all CI relations with conditioning set sizes up to a certain integer k. This becomes problematic in practice when variables with large support are present, as it makes CI tests less reliable due to near-deterministic relationships, thereby violating the faithfulness assumption. To address this issue, we propose a causal discovery algorithm that only uses CI tests where the conditioning sets are restricted to a given set of conditioning sets including the empty set C. We call such set of CI relations IC conditionally closed. We define the notion of C-Markov equivalence: two causal graphs are C-Markov equivalent if they entail the same set of CI constraints from IC. We propose a graphical representation of C-Markov equivalence and characterize such equivalence between two causal graphs. Our proposed algorithm called the C-PC algorithm is sound for learning the C-Markov equivalence class. We demonstrate the utility of the proposed algorithm via synthetic and real-world experiments in scenarios where variables with large support or high correlation are present in the data. Our source code is available online at github.com/kenneth-lee-ch/cpc.more » « less
-
null (Ed.)Ad-hoc data models like Json simplify schema evolution and enable multiplexing various data sources into a single stream. While useful when writing data, this flexibility makes Json harder to validate and query, forcing such tasks to rely on automated schema discovery techniques. Unfortunately, ambiguity in the schema design space forces existing schema discovery systems to make simplifying, data-independent assumptions about schema structure. When these assumptions are violated, most notably by APIs, the generated schemas are imprecise, creating numerous opportunities for false positives during validation. In this paper, we propose Jxplain, a Json schema discovery algorithm with heuristics that mitigate common forms of ambiguity. Although Jxplain is slightly slower than state of the art schema extractors, we show that it produces significantly more precise schemas.more » « less
An official website of the United States government

