skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mining Entity Synonyms with Efficient Neural Set Generation
Mining entity synonym sets (i.e., sets of terms referring to the same entity) is an important task for many entity-leveraging applications. Previous work either rank terms based on their similarity to a given query term, or treats the problem as a two-phase task (i.e., detecting synonymy pairs, followed by organizing these pairs into synonym sets). However, these approaches fail to model the holistic semantics of a set and suffer from the error propagation issue. Here we propose a new framework, named SynSetMine, that efficiently generates entity synonym sets from a given vocabulary, using example sets from external knowledge bases as distant supervision. SynSetMine consists of two novel modules: (1) a set-instance classifier that jointly learns how to represent a permutation invariant synonym set and whether to include a new instance (i.e., a term) into the set, and (2) a set generation algorithm that enumerates the vocabulary only once and applies the learned set-instance classifier to detect all entity synonym sets in it. Experiments on three real datasets from different domains demonstrate both effectiveness and efficiency of SynSetMine for mining entity synonym sets.  more » « less
Award ID(s):
1741317 1704532 1618481
PAR ID:
10125827
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
33
ISSN:
2159-5399
Page Range / eLocation ID:
249 to 256
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Entity set expansion (ESE) refers to mining ``siblings'' of some user-provided seed entities from unstructured data. It has drawn increasing attention in the IR and NLP communities for its various applications. To the best of our knowledge, there has not been any work towards a supervised neural model for entity set expansion from unstructured data. We suspect that the main reason is the lack of massive annotated entity sets. In order to solve this problem, we propose and implement a toolkit called {DBpedia-Sets}, which automatically extracts entity sets from any plain text collection and can provide a large number of distant supervision data for neural model training. We propose a two-channel neural re-ranking model {NESE} that jointly learns exact and semantic matching of entity contexts. The former accepts entity-context co-occurrence information and the latter learns a non-linear transformer from generally pre-trained embeddings to ESE-task specific embeddings for entities. Experiments on real datasets of different scales from different domains show that {NESE} outperforms state-of-the-art approaches in terms of precision and MAP, where the improvements are statistically significant and are higher when the given corpus is larger. 
    more » « less
  2. Recognizing entity synonyms from text has become a crucial task in many entity-leveraging applications. However, discovering entity synonyms from domain-specific text corpora (e.g., news articles, scientific papers) is rather challenging. Current systems take an entity name string as input to find out other names that are synonymous, ignoring the fact that often times a name string can refer to multiple entities (e.g., “apple” could refer to both Apple Inc and the fruit apple). Moreover, most existing methods require training data manually created by domain experts to construct supervised learning systems. In this paper, we study the problem of automatic synonym discovery with knowledge bases, that is, identifying synonyms for knowledge base entities in a given domain-specific corpus. The manually-curated synonyms for each entity stored in a knowledge base not only form a set of name strings to disambiguate the meaning for each other, but also can serve as “distant” supervision to help determine important features for the task. We propose a novel framework, called DPE, to integrate two kinds of mutually complementing signals for synonym discovery, i.e., distributional features based on corpus-level statistics and textual patterns based on local contexts. In particular, DPE jointly optimizes the two kinds of signals in conjunction with distant supervision, so that they can mutually enhance each other in the training stage. At the inference stage, both signals will be utilized to discover synonyms for the given entities. Experimental results prove the effectiveness of the proposed framework. 
    more » « less
  3. We study the problem of few-shot Fine-grained Entity Typing (FET), where only a few annotated entity mentions with contexts are given for each entity type. Recently, prompt-based tuning has demonstrated superior performance to standard fine-tuning in few-shot scenarios by formulating the entity type classification task as a “fill-in-the-blank” problem. This allows effective utilization of the strong language modeling capability of Pre-trained Language Models (PLMs). Despite the success of current prompt-based tuning approaches, two major challenges remain: (1) the verbalizer in prompts is either manually designed or constructed from external knowledge bases, without considering the target corpus and label hierarchy information, and (2) current approaches mainly utilize the representation power of PLMs, but have not explored their generation power acquired through extensive general-domain pre-training. In this work, we propose a novel framework for fewshot FET consisting of two modules: (1) an entity type label interpretation module automatically learns to relate type labels to the vocabulary by jointly leveraging few-shot instances and the label hierarchy, and (2) a type-based contextualized instance generator produces new instances based on given instances to enlarge the training set for better generalization. On three benchmark datasets, our model outperforms existing methods by significant margins. 
    more » « less
  4. null (Ed.)
    Entity set expansion and synonym discovery are two critical NLP tasks. Previous studies accomplish them separately, without exploring their interdependences. In this work, we hypothesize that these two tasks are tightly coupled because two synonymous entities tend to have similar likelihoods of belonging to various semantic classes. This motivates us to design SynSetExpan, a novel framework that enables two tasks to mutually enhance each other. SynSetExpan uses a synonym discovery model to include popular entities’ infrequent synonyms into the set, which boosts the set expansion recall. Meanwhile, the set expansion model, being able to determine whether an entity belongs to a semantic class, can generate pseudo training data to fine-tune the synonym discovery model towards better accuracy. To facilitate the research on studying the interplays of these two tasks, we create the first large-scale Synonym-Enhanced Set Expansion (SE2) dataset via crowdsourcing. Extensive experiments on the SE2 dataset and previous benchmarks demonstrate the effectiveness of SynSetExpan for both entity set expansion and synonym discovery tasks. 
    more » « less
  5. We consider the problem of duplicate detection in noisy and incomplete data: Given a large data set in which each record has multiple entries (attributes), detect which distinct records refer to the same real-world entity. This task is complicated by noise (such as misspellings) and missing data, which can lead to records being different, despite referring to the same entity. Our method consists of three main steps: creating a similarity score between records, grouping records together into “unique entities”, and refining the groups. We compare various methods for creating similarity scores between noisy records, considering different combinations of string matching, term frequency-inverse document frequency methods, and n-gram techniques. In particular, we introduce a vectorized soft term frequency-inverse document frequency method, with an optional refinement step. We also discuss two methods to deal with missing data in computing similarity scores. We test our method on the Los Angeles Police Department Field Interview Card data set, the Cora Citation Matching data set, and two sets of restaurant review data. The results show that the methods that use words as the basic units are preferable to those that use 3-grams. Moreover, in some (but certainly not all) parameter ranges soft term frequency-inverse document frequency methods can outperform the standard term frequency-inverse document frequency method. The results also confirm that our method for automatically determining the number of groups typically works well in many cases and allows for accurate results in the absence of a priori knowledge of the number of unique entities in the data set. 
    more » « less