This paper presents the development and preliminary implementation of a multi-scale material and mechanics education module to improve undergraduate solid mechanics education. We experimentally characterize 3D printed and conventional wrought aluminum samples and collect structural images and perform testing at the micro- and macro- scales. At the micro-scale, we focus on the visualization of material’s grain structures. At the macro-scale, standard material characterization following ASTM standards is conducted to obtain the macroscopic behavior. Digital image correlation technology is employed to obtain the two-dimensional strain field during the macro-scale testing. An evaluation of student learning of solid mechanics and materials behavior concepts is carried out to establish as baseline before further interventions are introduced. The established multi-scale mechanics and materials testing dataset will be also used in a broad range of undergraduate courses, such as Solid Mechanics, Design of Mechanical Components, and Manufacturing Processes, to inform curricular improvement. The successful implementation of this multi-scale approach for education is likely to enhance students’ understanding of abstract solid mechanics theories and establish links between mechanics and materials concepts. More broadly, this approach will assist advanced solid mechanics education in undergraduate engineering education throughout the country.
more »
« less
Multi-scale Characterization and Visualization of Metallic Structures to Improve Solid Mechanics Education
This paper presents the development and preliminary implementation of a multi-scale material and mechanics education module to improve undergraduate solid mechanics education. We experimentally characterize 3D printed and conventional wrought aluminum samples and collect structural images and perform testing at the micro- and macro- scales. At the micro-scale, we focus on the visualization of material’s grain structures. At the macro-scale, standard material characterization following ASTM standards is conducted to obtain the macroscopic behavior. Digital image correlation technology is employed to obtain the two-dimensional strain field during the macro-scale testing. An evaluation of student learning of solid mechanics and materials behavior concepts is carried out to establish as baseline before further interventions are introduced. The established multi-scale mechanics and materials testing dataset will be also used in a broad range of undergraduate courses, such as Solid Mechanics, Design of Mechanical Components, and Manufacturing Processes, to inform curricular improvement. The successful implementation of this multi-scale approach for education is likely to enhance students’ understanding of abstract solid mechanics theories and establish links between mechanics and materials concepts. More broadly, this approach will assist advanced solid mechanics education in undergraduate engineering education throughout the country.
more »
« less
- Award ID(s):
- 1712178
- PAR ID:
- 10125834
- Date Published:
- Journal Name:
- 2019 ASEE Annual Conference & Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Classical mechanics courses are taught to most engineering disciplinary undergraduate students. Due to the recent advancements of multiscale analysis and practice, necessary reforms need to be investigated and explored for classical mechanics courses to address the materials’ mechanics behaviors across multiple length scales. This enhanced understanding is needed for engineering students to consider materials more broadly. This paper presents a recent effort for the development of a multiscale materials and mechanics experimentation (M3E) module that can be potentially implemented in undergraduate mechanics courses, including Statics, Dynamics, Strength of Materials, and Design of Mechanical (Machine) Components. The developed education module introduces the concepts of multiscale materials behavior and microstructures in the form of micro and macro-scales. At the micro-scale, both 3D printed aluminum and cold-rolled aluminum samples were characterized using scanning electron microscope. Microstructures, including grains, grain boundaries, dislocation, precipitates, and micro-voids, were demonstrated to students. At the macro-scale, experiments following ASTM standards were conducted and full strain fields carried by all the samples were analyzed using digital image correlation method. The experimental data were organized and presented to the students in the developed M3E module. The implementation of the developed module in undergraduate mechanics classes allows students to not only visualize materials behavior under various load conditions, but also understand the reasons behind classical mechanics properties. To assess the effectiveness of the developed M3E education module, an evaluation question was developed. Students are required to classify key mechanics, materials, and processing concepts at both micro and macroscales. More than 40 fundamental concepts and keywords are included in the tests. The study outcomes and effectiveness of the M3E education module will be reported in this paper.more » « less
-
ABSTRACT This article presents a laboratory module developed for undergraduate micro/nano engineering laboratory courses in the mechanical engineering departments at the Massachusetts Institute of Technology and King Fahd University of Petroleum and Minerals. In this laboratory, students fabricate superoleophobic membranes by spray-coating of titania nanoparticles on steel meshes, characterize the surfaces and ability of the membrane to retain oil, and then use these membranes to separate an oil-water mixture. The laboratory module covers nanomaterials, nanomanufacturing, materials characterization, and understanding of the concepts of surface tension and hydrostatics, with oil-water separation as an application. The laboratory experiments are easy to set up based on commercially available tools and materials, which will facilitate implementation of this module in other educational institutions. The significance of oil-water separation in the petroleum industry and integration of concepts from fluid mechanics in the laboratory module will help to illustrate the relevance of nanotechnology to mechanical and materials engineering and its potential to address some of the future societal needs.more » « less
-
null (Ed.)Geotechnical engineering undergraduate curriculum typically consist of courses in soil mechanics and foundation design that include a variety of topics that are difficult for students to understand and master. Behavior of the below grade natural and built geomaterials discussed in these courses can be difficult for students to visualize. Typically, the mechanisms of behavior are demonstrated using small-scale laboratory tests, two-dimensional sketches, simple table-top models, or video simulations in the classroom. Students rarely have the opportunity to observe large-scale behavior of foundations in the field or laboratory. The authors from Rose-Hulman Institute of Technology and Saint Louis University designed and implemented a large-scale foundation testing system to address several topics that students tend to struggle with the most, including 1) the difference in strength and service limit states in shallow foundation design, 2) soil-structure interaction associated with lateral behavior of deep foundations, and 3) the influence of near-surface soil on lateral behavior of deep foundations. This paper provides a detailed overview of the design, fabrication, and implementation of two large-scale experiential learning modules for undergraduate courses in soil mechanics and foundation engineering. The first module utilizes shallow foundations in varying configurations to demonstrate the differences in strength and service limit state behavior of shallow foundations. The second module utilizes a relatively flexible pile foundation embedded in sand to demonstrate the lateral behavior of deep foundations. The first module was used in the soil mechanics courses at Rose-Hulman Institute of Technology and Saint Louis University to compare theoretical and observed behavior of shallow foundations. The second module was used in the foundation engineering course at Rose-Hulman Institute of Technology to illustrate the concepts of soil-structure interaction and the influence of near-surface soil on lateral behavior of deep foundations.more » « less
-
ABSTRACT Physics forms the core of any Materials Science Programme at undergraduate level. Knowing the properties of materials is fundamental to developing and designing new materials and new applications for known materials. “Physical Physics” is a physics education approach which is an innovative and promising instruction model that integrates physical activity with mechanics and material properties. It aims to significantly enhance the learning experience and to illustrate how physics works, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying mechanics on a Games Development Programme. It is a structured guided learning approach which provides a scaffold for learners to develop their problem solving skills. The objective of having applied physics on a programme is to introduce students to the mathematical world. Today students view the world through smart devices. By incorporating student recorded videos into the laboratory experience the student can visualise the mathematical world. Sitting in a classroom learning about material properties does not easily facilitate an understanding of mathematical equations as mapping to a physical reality. In order to get the students motivated and immersed in the real mathematical and physical world, an approach which makes them think about the cause and effect of actions is used. Incorporating physical action with physics enables students to assimilate knowledge and adopt an action problem solving approach to the physics concept. This is an integrated approach that requires synthesis of information from various sources in order to accomplish the task. As a transferable skill, this will ensure that the material scientists will be visionary in their approach to real life problems.more » « less
An official website of the United States government

