skip to main content


Title: Measuring Group Personality with Swarm AI
The aggregation of individual personality tests to predict team performance is widely accepted in management theory but has significant limitations: the isolated nature of individual personality surveys fails to capture much of the team dynamics that drive real-world team performance. Artificial Swarm Intelligence (ASI), a technology that enables networked teams to think together in real-time and answer questions as a unified system, promises a solution to these limitations by enabling teams to take personality tests together, whereby the team uses ASI to converge upon answers that best represent the group’s disposition. In the present study, the group personality of 94 small teams was assessed by having teams take a standard Big Five Inventory (BFI) test both as individuals, and as a real-time system enabled by an ASI technology known as Swarm AI. The predictive accuracy of each personality assessment method was assessed by correlating the BFI personality traits to a range of real-world performance metrics. The results showed that assessments of personality generated using Swarm AI were far more predictive of team performance than the traditional survey-based method, showing a significant improvement in correlation with at least 25% of performance metrics, and in no case showing a significant decrease in predictive performance. This suggests that Swarm AI technology may be used as a highly effective team personality assessment tool that more accurately predicts future team performance than traditional survey approaches.  more » « less
Award ID(s):
1840937
PAR ID:
10125840
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
TransAI 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the natural world, Swarm Intelligence (SI) is a well-known phenomenon that enables groups of organisms to make collective decisions with significantly greater accuracy than the individuals could do on their own. In recent years, a new AI technology called Artificial Swarm Intelligence (ASI) has been developed that enables similar benefits for human teams. It works by connecting networked teams into real-time systems modeled on natural swarms. Referred to commonly as “human swarms” or “hive minds,” these closed-loop systems have been shown to amplify group performance across a wide range of tasks, from financial forecasting to strategic decision-making. The current study explores the ability of ASI technology to amplify the IQ of small teams. Five small teams answered a series of questions from a commonly used intelligence test known as the Raven’s Standard Progressive Matrices (RSPM) test. Participants took the test first as individuals, and then as groups moderated by swarming algorithms (i.e. “swarms”). The average individual achieved 53.7% correct, while the average swarm achieved 76.7% correct, corresponding to an estimated IQ increase of 14 points. When the individual responses were aggregated by majority vote, the groups scored 56.7% correct, still 12 IQ points less than the real-time swarming method. 
    more » « less
  2. Swarm Intelligence (SI) is a biological phenomenon in which groups of organisms amplify their combined intelligence by forming real-time systems. It has been studied for decades in fish schools, bird flocks, and bee swarms. Recent advances in networking and AI technologies have enabled distributed human groups to form closed-loop systems modeled after natural swarms. The process is referred to as Artificial Swarm Intelligence (ASI) and has been shown to significantly amplify group intelligence. The present research applies ASI technology to the field of medicine, exploring if small groups of networked radiologists can improve their diagnostic accuracy when reviewing chest X-rays for the presence of pneumonia by “thinking together” as an ASI system. Data was collected for individual diagnoses as well as for diagnoses made by the group working as a real-time ASI system. Diagnoses were also collected using a state-of-the-art deep learning system developed by Stanford University School of Medicine. Results showed that a small group of networked radiologists, when working as a real-time closed-loop ASI system, was significantly more accurate than the individuals on their own, reducing errors by 33%, as well as significantly more accurate (22%) than a state- of-the-art software-only solution using deep learning. 
    more » « less
  3. Sales forecasts are critical to businesses of all sizes, enabling teams to project revenue, prioritize marketing, plan distribution, and scale inventory levels. To date, however, sales forecasts of new products have been shown to be highly inaccurate, due in large part to the lack of data about each new product and the subjective judgements required to compensate for this lack of data. The present study explores product sales forecasting performed by human groups and compares the accuracy of group forecasts generated by traditional polls to those made using Artificial Swarm Intelligence (ASI), a technique which has been shown to amplify the forecasting accuracy of groups in a wide range of fields. In collaboration with a major fashion retailer and a major fashion publisher, groups of fashion-conscious millennial women predicted the relative sales volumes of eight sweaters promoted during the 2018 holiday season, first by ranking each sweater’s sales in an online poll, and then using Swarm software to form an ASI system. The Swarm-based forecast was significantly more accurate than the poll. In fact, the top four sweaters ranked by swarm sold 23.7% more units, or $600,000 worth of sweaters during the target period, as compared to the top four sweaters as ranked by survey, (p = 0.0497), indicating that swarms of small consumer groups can be used to forecast sales with significantly higher accuracy than a traditional poll. 
    more » « less
  4. null (Ed.)
    There is growing awareness that AI and machine learning systems can in some cases learn to behave in unfair and discriminatory ways with harmful consequences. However, despite an enormous amount of research, techniques for ensuring AI fairness have yet to see widespread deployment in real systems. One of the main barriers is the conventional wisdom that fairness brings a cost in predictive performance metrics such as accuracy which could affect an organization's bottom-line. In this paper we take a closer look at this concern. Clearly fairness/performance trade-offs exist, but are they inevitable? In contrast to the conventional wisdom, we find that it is frequently possible, indeed straightforward, to improve on a trained model's fairness without sacrificing predictive performance. We systematically study the behavior of fair learning algorithms on a range of benchmark datasets, showing that it is possible to improve fairness to some degree with no loss (or even an improvement) in predictive performance via a sensible hyper-parameter selection strategy. Our results reveal a pathway toward increasing the deployment of fair AI methods, with potentially substantial positive real-world impacts. 
    more » « less
  5. As AI increasingly assists teams in decision-making, the study examines how technology shapes team processes and performance. We conducted an online experiment of team decision-making assisted by chatbots and analyzed team interaction processes with computational methods. We found that teams assisted by a chatbot offering information in the first half of their decision-making process performed better than those assisted by the chatbot in the second half. The effect was explained by the variation in teams’ information-sharing process between the two chatbot conditions. When assisted by the chatbot in the first half of the decision-making task, teams showed higher levels of cognitive diversity (i.e., the difference in the information they shared) and information elaboration (i.e., exchange and integration of information). The findings demonstrate that if introduced early, AI can support team decision-making by acting as a catalyst to promote team information sharing. 
    more » « less