skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Symmetry Motivated Link Table
Proper identification of oriented knots and 2-component links requires a precise link nomenclature. Motivated by questions arising in DNA topology, this study aims to produce a nomenclature unambiguous with respect to link symmetries. For knots, this involves distinguishing a knot type from its mirror image. In the case of 2-component links, there are up to sixteen possible symmetry types for each link type. The study revisits the methods previously used to disambiguate chiral knots and extends them to oriented 2-component links with up to nine crossings. Monte Carlo simulations are used to report on writhe, a geometric indicator of chirality. There are ninety-two prime 2-component links with up to nine crossings. Guided by geometrical data, linking number, and the symmetry groups of 2-component links, canonical link diagrams for all but five link types (9 5 2, 9 34 2, 9 35 2, 9 39 2, and 9 41 2) are proposed. We include complete tables for prime knots with up to ten crossings and prime links with up to nine crossings. We also prove a result on the behavior of the writhe under local lattice moves.  more » « less
Award ID(s):
1817156
PAR ID:
10125853
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Symmetry
Volume:
10
Issue:
11
ISSN:
2073-8994
Page Range / eLocation ID:
604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove that the knots [Formula: see text] and [Formula: see text] both have stick number 10. These are the first non-torus prime knots with more than 9 crossings for which the exact stick number is known. 
    more » « less
  2. Goaoc, Xavier; Kerber, Michael (Ed.)
    A knot is a circle piecewise-linearly embedded into the 3-sphere. The topology of a knot is intimately related to that of its exterior, which is the complement of an open regular neighborhood of the knot. Knots are typically encoded by planar diagrams, whereas their exteriors, which are compact 3-manifolds with torus boundary, are encoded by triangulations. Here, we give the first practical algorithm for finding a diagram of a knot given a triangulation of its exterior. Our method applies to links as well as knots, allows us to recover links with hundreds of crossings. We use it to find the first diagrams known for 23 principal congruence arithmetic link exteriors; the largest has over 2,500 crossings. Other applications include finding pairs of knots with the same 0-surgery, which relates to questions about slice knots and the smooth 4D Poincaré conjecture. 
    more » « less
  3. We give a classification of Legendrian torus links. Along the way, we give the first classification of infinite families of Legendrian links where some smooth symmetries of the link cannot be realized by Legendrian isotopies. We also give the first family of links that are non-destabilizable but do not have maximal \tb invariant and observe a curious distribution of Legendrian torus knots that can be realized as the components of a Legendrian torus link. This classification of Legendrian torus links leads to a classification of transversal torus links. We also give a classification of Legendrian and transversal cable links of knot types that are uniformly thick and Legendrian simple. Here we see some similarities with the classification of Legendrian torus links, but also some differences. In particular, we show that there are Legendrian representatives of cable links of any uniformly thick knot type for which no symmetries of the components can be realized by a Legendrian isotopy, others where only cyclic permutations of the components can be realized, and yet others where all smooth symmetries are realizable. 
    more » « less
  4. Abstract The central question of knot theory is that of distinguishing links up to isotopy. The first polynomial invariant of links devised to help answer this question was the Alexander polynomial (1928). Almost a century after its introduction, it still presents us with tantalizing questions, such as Fox’s conjecture (1962) that the absolute values of the coefficients of the Alexander polynomial $$\Delta _{L}(t)$$ of an alternating link $$L$$ are unimodal. Fox’s conjecture remains open in general with special cases settled by Hartley (1979) for two-bridge knots, by Murasugi (1985) for a family of alternating algebraic links, and by Ozsváth and Szabó (2003) for the case of genus $$2$$ alternating knots, among others. We settle Fox’s conjecture for special alternating links. We do so by proving that a certain multivariate generalization of the Alexander polynomial of special alternating links is Lorentzian. As a consequence, we obtain that the absolute values of the coefficients of $$\Delta _{L}(t)$$, where $$L$$ is a special alternating link, form a log-concave sequence with no internal zeros. In particular, they are unimodal. 
    more » « less
  5. In this paper, we examine the properties of the Jones polynomial using dimensionality reduction learning techniques combined with ideas from topological data analysis. Our data set consists of more than 10 million knots up to 17 crossings and two other special families up to 2001 crossings. We introduce and describe a method for using filtrations to analyze infinite data sets where representative sampling is impossible or impractical, an essential requirement for working with knots and the data from knot invariants. In particular, this method provides a new approach for analyzing knot invariants using Principal Component Analysis. Using this approach on the Jones polynomial data, we find that it can be viewed as an approximately three-dimensional subspace, that this description is surprisingly stable with respect to the filtration by the crossing number, and that the results suggest further structures to be examined and understood. 
    more » « less