skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Legendrian torus and cable links
We give a classification of Legendrian torus links. Along the way, we give the first classification of infinite families of Legendrian links where some smooth symmetries of the link cannot be realized by Legendrian isotopies. We also give the first family of links that are non-destabilizable but do not have maximal \tb invariant and observe a curious distribution of Legendrian torus knots that can be realized as the components of a Legendrian torus link. This classification of Legendrian torus links leads to a classification of transversal torus links. We also give a classification of Legendrian and transversal cable links of knot types that are uniformly thick and Legendrian simple. Here we see some similarities with the classification of Legendrian torus links, but also some differences. In particular, we show that there are Legendrian representatives of cable links of any uniformly thick knot type for which no symmetries of the components can be realized by a Legendrian isotopy, others where only cyclic permutations of the components can be realized, and yet others where all smooth symmetries are realizable.  more » « less
Award ID(s):
2203312
PAR ID:
10610061
Author(s) / Creator(s):
; ;
Publisher / Repository:
International Press of Boston
Date Published:
Journal Name:
Journal of Symplectic Geometry
Volume:
22
Issue:
1
ISSN:
1527-5256
Page Range / eLocation ID:
11 to 108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Goaoc, Xavier; Kerber, Michael (Ed.)
    A knot is a circle piecewise-linearly embedded into the 3-sphere. The topology of a knot is intimately related to that of its exterior, which is the complement of an open regular neighborhood of the knot. Knots are typically encoded by planar diagrams, whereas their exteriors, which are compact 3-manifolds with torus boundary, are encoded by triangulations. Here, we give the first practical algorithm for finding a diagram of a knot given a triangulation of its exterior. Our method applies to links as well as knots, allows us to recover links with hundreds of crossings. We use it to find the first diagrams known for 23 principal congruence arithmetic link exteriors; the largest has over 2,500 crossings. Other applications include finding pairs of knots with the same 0-surgery, which relates to questions about slice knots and the smooth 4D Poincaré conjecture. 
    more » « less
  2. Abstract Let $$T$$ be a satellite knot, link, or spatial graph in a 3-manifold $$M$$ that is either $S^3$ or a lens space. Let $$\b_0$$ and $$\b_1$$ denote genus 0 and genus 1 bridge number, respectively. Suppose that $$T$$ has a companion knot $$K$$ (necessarily not the unknot) and wrapping number $$\omega$$ with respect to $$K$$. When $$K$$ is not a torus knot, we show that $$\b_1(T)\geq \omega \b_1(K)$$. There are previously known counter-examples if $$K$$ is a torus knot. Along the way, we generalize and give a new proof of Schubert's result that $$\b_0(T) \geq \omega \b_0(K)$$. We also prove versions of the theorem applicable to when $$T$$ is a "lensed satellite" and when there is a torus separating components of $$T$$. 
    more » « less
  3. Abstract In this article, we show that all cyclic branched covers of a Seifert link have left‐orderable fundamental groups, and therefore admit co‐oriented taut foliations and are not ‐spaces, if and only if it is not an link up to orientation. This leads to a proof of the link conjecture for Seifert links. When is an link up to orientation, we determine which of its canonical ‐fold cyclic branched covers have nonleft‐orderable fundamental groups. In addition, we give a topological proof of Ishikawa's classification of strongly quasi‐positive Seifert links and we determine the Seifert links that are definite, resp., have genus zero, resp. have genus equal to its smooth 4‐ball genus, among others. In the last section, we provide a comprehensive survey of the current knowledge and results concerning the link conjecture. 
    more » « less
  4. Abstract We construct closed arboreal Lagrangian skeleta associated to links of isolated plane curve singularities. This yields closed Lagrangian skeleta for Weinstein pairs $$(\mathbb {C}^2,\Lambda )$$ ( C 2 , Λ ) and Weinstein 4-manifolds $$W(\Lambda )$$ W ( Λ ) associated to max-tb Legendrian representatives of algebraic links $$\Lambda \subseteq (\mathbb {S}^3,\xi _\text {st})$$ Λ ⊆ ( S 3 , ξ st ) . We provide computations of Legendrian and Weinstein invariants, and discuss the contact topological nature of the Fomin–Pylyavskyy–Shustin–Thurston cluster algebra associated to a singularity. Finally, we present a conjectural ADE-classification for Lagrangian fillings of certain Legendrian links and list some related problems. 
    more » « less
  5. null (Ed.)
    We introduce a new method for computing triply graded link homology, which is particularly well adapted to torus links. Our main application is to the $(n,n)$ -torus links, for which we give an exact answer for all $$n$$ . In several cases, our computations verify conjectures of Gorsky et al. relating homology of torus links with Hilbert schemes. 
    more » « less