skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of Metazooplankton Filter Feeding on Escherichia coli under Variable Environmental Conditions
ABSTRACT The fecal indicator bacterial species Escherichia coli is an important measure of water quality and a leading cause of impaired surface waters. We investigated the impact of the filter-feeding metazooplankton Daphnia magna on the inactivation of E. coli . The E. coli clearance rates of these daphnids were calculated from a series of batch experiments conducted under variable environmental conditions. Batch system experiments of 24 to 48 h in duration were completed to test the impacts of bacterial concentration, organism density, temperature, and water type. The maximum clearance rate for adult D. magna organisms was 2 ml h −1 organism −1 . Less than 5% of E. coli removed from water by daphnids was recoverable from excretions. Sorption of E. coli on daphnid carapaces was not observed. As a comparison, the clearance rates of the freshwater rotifer Branchionus calyciflorus were also calculated for select conditions. The maximum clearance rate for B. calyciflorus was 6 × 10 −4  ml h −1 organism −1 . This research furthers our understanding of the impacts of metazooplankton predation on E. coli inactivation and the effects of environmental variables on filter feeding. Based on our results, metazooplankton can play an important role in the reduction of E. coli in natural treatment systems under environmentally relevant conditions. IMPORTANCE Escherichia coli is a fecal indicator bacterial species monitored by the U.S. Environmental Protection Agency to assess microbial water quality. Due to the potential human health implications linked to high levels of E. coli , it is important to understand the inactivation or reduction mechanisms in surface waters. Our research examines the capacities of two types of widespread filter-feeding freshwater metazooplankton, Daphnia magna and Brachionus calyciflorus , to reduce E. coli concentrations. We examine the impacts of different environmentally relevant conditions on the clearance rates. Our results contribute to a better understanding of the importance of metazooplankton in controlling E. coli concentrations and what conditions will reduce or increase grazing. These results provide baseline data to support future efforts to develop a quantitative model relating zooplankton uptake rates to relevant environmental variables.  more » « less
Award ID(s):
1804941
PAR ID:
10125869
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied and Environmental Microbiology
Volume:
85
Issue:
23
ISSN:
0099-2240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Treatment wetlands can remove a wide range of pollutants from wastewater and stormwater runoff, including microbial pollutants such as Escherichia coli . Filter feeding zooplankton play an important role in improving water quality in treatment wetlands through grazing and subsequent inactivation of E. coli . Understanding how climate change will impact the various processes governing microbial inactivation in treatment wetlands is essential to ensure adequately treated water. We investigated the impact of interacting environmental factors on the E. coli clearance rate of a keystone zooplankton species, Daphnia magna . We utilized a full factorial experimental design to test the impacts of food abundance, food type, and temperature in flow-through mesocosms under environmentally relevant conditions. Temperature and food abundance interactions were significant, which highlights the importance of studying multiple environmental variables when considering the filter feeding contributions of zooplankton. While both food abundance and temperature had a significant impact on clearance rate, daphnids did not exhibit a preference between algae or E. coli , which were the two food sources used in our studies. We observed that at 25 °C, food abundance and type had a larger impact on E. coli clearance rate than at 15 °C, which has important implications when considering resiliency of treatment wetlands in a warming climate. Our findings show that zooplankton filtration behavior will be impacted by environmental conditions that are projected due to climatic changes, but populations can still inactivate E. coli and improve water quality when exposed to these conditions. 
    more » « less
  2. Fecal contamination is a significant source of water quality impairment globally. Aquatic ecosystems can provide an important ecosystem service of fecal contamination removal. Understanding the processes that regulate the removal of fecal contamination among river networks across flow conditions is critical. We applied a river network model, the Framework for Aquatic Modeling in the Earth System (FrAMES-Ecoli), to quantify removal of fecal indicator bacteria by river networks across flow conditions during summers in a series of New England watersheds of different characteristics. FrAMES-Ecoli simulates sources, transport, and riverine removal of Escherichia coli (E. coli). Aquatic E. coli removal was simulated in both the water column and the hyporheic zone, and is a function of hydraulic conditions, flow exchange rates with the hyporheic zone, and die-off in each compartment. We found that, at the river network scale during summers, removal by river networks can be high (19–99%) with variability controlled by hydrologic conditions, watershed size, and distribution of sources in the watershed. Hydrology controls much of the variability, with 68–99% of network scale inputs removed under base flow conditions and 19–85% removed during storm events. Removal by the water column alone could not explain the observed pattern in E. coli, suggesting that processes such as hyporheic removal must be considered. These results suggest that river network removal of fecal indicator bacteria should be taken into consideration in managing fecal contamination at critical downstream receiving waters. 
    more » « less
  3. We introduce the facile one-step biosynthesis of a bilayer structured hydrogel composite of reduced-graphene oxide (rGO) and bacterial nanocellulose (BNC) for multiple photothermal water treatment applications. One-step in situ biosynthesis of a bilayered hydrogel was achieved via modification of BNC growth medium supplemented with an optimized concentration of corn steep liquor as a growth enhancer. A two-stage, growth rate-controlled formation mechanism for the bilayer structure was revealed. The final cleaned and freeze-dried reduced-GO embedded BNC bilayer membrane enables versatile applications such as filtration (tested using gold nanoparticles, Escherichia coli cells, and plasmid DNA), photothermal disinfection of entrapped E. coli , and solar water evaporation. Comparable particle rejection (up to ≈4 nm) and water flux (146 L h −1 m −2 ) to ultrafiltration were observed. Entrapment and photothermal inactivation of E. coli cells were accomplished within 10 min of solar exposure (one sun). Such treatment can potentially suppress membrane biofouling. The steam generation capacity was 1.96 kg m −2 h −1 . Our simple and scalable approach opens a new path for biosynthesis of nanostructured materials for environmental and biomedical applications. 
    more » « less
  4. Abstract Bacterial contamination of surface water is a public health concern. To quantify the efflux ofEscherichia coliinto ephemeral and intermittent streams and assess its numbers in relation to secondary body contact standards, we monitored runoff and measuredE. colinumbers from 10 experimental watersheds that differed in vegetation cover and cattle access in north‐central Oklahoma.Escherichia colinumbers were not significantly different among the watersheds, with one exception; the grazed prairie watershed (GP1) had greater numbers compared to one ungrazed prairie watershed (UP2). MedianE. colinumbers in runoff from ungrazed watersheds ranged from 260 to 1482 MPN/100 mL in comparison with grazed watersheds that ranged from 320 to 8878 MPN/100 mL. In the GP1 watershed, higher cattle stocking rates during pre‐ and post‐calving (February–May) resulted in significantly greater bacterial numbers and event loading compared to periods with lower stocking rates. The lack of significance among watersheds is likely due to the grazed sites being rotationally (and lightly) grazed, data variability, and wildlife contributions. To address wildlife sources, we used camera trap data to assess the usage in the watersheds; however, the average number of animals in a 24‐h period did not correlate with observed medianE. colinumbers. Because of its impacts onE. colinumbers in water, grazing management (stocking rate, rotation, and timing) should be considered for improving water quality in streams and reservoirs. 
    more » « less
  5. null (Ed.)
    Abstract In India, high rates of antibiotic consumption and poor sanitation infrastructure combine to pose a significant risk to the public through the environmental transmission of antimicrobial resistance (AMR). The WHO has declared extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli a key indicator for the surveillance of AMR worldwide. In the current study, we measured the prevalence of AMR bacteria in an urban aquatic environment in India by detecting metabolically active ESBL-positive E. coli. Water samples were collected in duplicate from 16 representative environmental water sources including open canals, drains, and rivers around Kanpur, Uttar Pradesh. We detected culturable E. coli in environmental water at 11 (69%) of the sites. Out of the 11 sites that were positive for culturable E. coli, ESBL-producing E. coli was observed at 7 (64%). The prevalence of ESBL-producing E. coli detected in the urban aquatic environment suggests a threat of AMR bacteria to this region. 
    more » « less