skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Getting more early photons with less background: detection rate and signal-to-background improvements in enhanced early photon imaging
Award ID(s):
1653627
PAR ID:
10126125
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of SPIE
Page Range / eLocation ID:
13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In cosmologies with hidden sector dark matter, the lightest hidden sector species can come to dominate the energy budget of the universe and cause an early matter-dominated era (EMDE). EMDEs amplify the matter power spectrum on small scales, leading to dense, early-forming microhalos which massively boost the dark matter annihilation signal. We use the Fermi-LAT measurement of the isotropic gamma-ray background to place limits on the parameter space of hidden sector models with EMDEs. We calculate the amplified annihilation signal by sampling the properties of prompt cusps, which reside at the centers of these microhalos and dominate the signal on account of their steepρ∝r-3/2density profiles. We also include the portions of the parameter space affected by the gravitational heating that arises from the formation and subsequent destruction of nonlinear structure during the EMDE. We are able to rule out significant portions of the parameter space, particularly at high reheat temperatures. Long EMDEs remain poorly constrained despite large structure-induced boosts to the annihilation signal. 
    more » « less