skip to main content


Search for: All records

Award ID contains: 1653627

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fantini, Sergio ; Taroni, Paola (Ed.)
  2. Boudoux, Caroline ; Tunnell, James W. (Ed.)
  3. Pfefer, T. Joshua ; Hwang, Jeeseong ; Vargas, Gracie (Ed.)
  4. This work concerns a fluorescence optical projection tomography system for low scattering tissue, like lymph nodes, with angular-domain rejection of highly scattered photons. In this regime, filtered backprojection (FBP) image reconstruction has been shown to provide reasonable quality images, yet here a comparison of image quality between images obtained by FBP and iterative image reconstruction with a Monte Carlo generated system matrix, demonstrate measurable improvements with the iterative method. Through simulated and experimental phantoms, iterative algorithms consistently outperformed FBP in terms of contrast and spatial resolution. Moreover, when projection number was reduced, in order to reduce total imaging time, iterative reconstruction suppressed artifacts that hampered the performance of FBP reconstruction (structural similarity of the reconstructed images with “truth” was improved from 0.15 ± 1.2 × 10−3to 0.66 ± 0.02); and although the system matrix was generated for homogenous optical properties, when heterogeneity (62.98 cm-1variance inµs) was introduced to simulated phantoms, the results were still comparable (structural similarity homo: 0.67 ± 0.02 vs hetero: 0.66 ± 0.02).

     
    more » « less
  5. Transmittance and fluorescence optical projection tomography can offer high-resolution and high-contrast visualization of whole biological specimens; however, applications are limited to samples exhibiting minimal light scattering. Our previous work demonstrated that angular-domain techniques permitted imaging of∼<#comment/>1cmdiameter noncleared lymph nodes because of their low scattering nature. Here, an angle-restricted transmittance/fluorescence system is presented and characterized in terms of geometric and fluorescence concentration reconstruction accuracy as well as spatial resolution, depth of focus, and fluorescence limits of detection. Using lymph node mimicking phantoms, results demonstrated promising detection and localization capabilities relevant for clinical lymph node applications.

     
    more » « less
  6. null (Ed.)
  7. Mahadevan-Jansen, Anita (Ed.)
  8. Gibbs, Summer L. ; Pogue, Brian W. ; Gioux, Sylvain (Ed.)
  9. Evans, Conor L. ; Chan, Kin Foong (Ed.)