Abstract ObjectivesCortical bone geometry is commonly used to investigate biomechanical properties of primate mandibles. However, the ontogeny of these properties is less understood. Here we investigate changes in cortical bone cross‐sectional properties throughout capuchin ontogeny and compare captive versus wild, semi‐provisioned groups. Tufted capuchins (Sapajusspp.) are known to consume relatively hard/tough foods, while untufted capuchins (Cebusspp.) exploit less mechanically challenging foods. Previous research indicates dietary differences are present early in development and adultSapajusmandibles can resist higher bending/shear/torsional loads. Materials and methodsThis study utilized microCT scans of 22Cebusand 45Sapajusfrom early infancy to adulthood from three sample populations: one captiveCebus, one captiveSapajus, and one semi‐provisioned, free‐rangingSapajus. Mandibular cross‐sectional properties were calculated at the symphysis, P3, and M1. If the tooth had not erupted, its position within the crypt was used. A series of one‐way ANOVAs were performed to assess differences between and within the sample populations. ResultsMandible robusticity increases across ontogeny for all three sample populations.Sapajuswere better able to withstand bending and torsional loading even early in ontogeny, but no difference in shear resistance was found. Semi‐provisioned, free‐rangingSapajustend to show increased abilities to resist bending and torsional loading but not shear loading compared to captiveSapajus. DiscussionThis study helps advance our understanding of the primate masticatory system development and opens the door for further studies into adaptive plasticity in shaping the masticatory apparatus of capuchins and differences in captive versus free‐ranging sample populations.
more »
« less
A Phosphorus(III)‐Mediated (4+1)‐Cycloaddition of 1,2‐Dicarbonyls and Aza‐ o ‐Quinone Methides to Access 2,3‐Dihydroindoles
Abstract A (4+1)‐cycloaddition is reported between 1,2‐dicarbonyls and aza‐o‐quinone methide precursors to access 2,3‐dihydroindoles bearing a tetra‐substituted carbon center. The utilization of dioxyphospholenes as carbene surrogates provided dihydroindoles in 20–90 % yield, wherein the electronic nature of the dioxyphospholene impacts its role in the reaction.
more »
« less
- Award ID(s):
- 1665440
- PAR ID:
- 10126297
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Helvetica Chimica Acta
- Volume:
- 102
- Issue:
- 12
- ISSN:
- 0018-019X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract TaxonomyPotato virus Xis the type‐member of the plant‐infectingPotexvirusgenus in the familyAlphaflexiviridae. Physical propertiesPotato virus X (PVX) virions are flexuous filaments 460–480 nm in length. Virions are 13 nm in diameter and have a helical pitch of 3.4 nm. The genome is approximately 6.4 kb with a 5′ cap and 3′ poly(A) terminus. PVX contains five open reading frames, four of which are essential for cell‐to‐cell and systemic movement. One protein encodes the viral replicase. Cellular inclusions, known as X‐bodies, occur near the nucleus of virus‐infected cells. HostsThe primary host is potato, but it infects a wide range of dicots. Diagnostic hosts includeDatura stramoniumandNicotiana tabacum. PVX is transmitted in nature by mechanical contact. Useful websitehttps://talk.ictvonline.org/ictv‐reports/ictv_online_report/positive‐sense‐rna‐viruses/w/alphaflexiviridae/1330/genus‐potexvirusmore » « less
-
Summary The timing of insects’ daily (feeding, movement) and seasonal (diapause, migration) rhythms affects their population dynamics and distribution. Yet, despite their implications for insect conservation and pest management, the genetic mechanisms underlying variation in timing are poorly understood. Prior research in the European corn borer moth (Ostrinia nubilalis) associated ecotype differences in seasonal diapause and daily activity with genetic variation at the circadian clock geneperiod(per). Here, we demonstrate that populations with divergent allele frequencies atperexhibit differences in daily behavior, seasonal development, and the expression of circadian clock genes. Specifically, later daily activity and shortened diapause were associated with a reduction and delay in the abundance of cyclingpermRNA. CRISPR/Cas9-mediated mutagenesis revealed thatperand/or an intact circadian clock network were essential for the appropriate timing of daily behavior and seasonal responsiveness. Furthermore, a reduction ofpergene dosage inperheterozygous mutants (per-/+) pleiotropically decreased the diapause incidence, shortened post-diapause development, and delayed the timing of daily behavior, in a manner phenotypically reminiscent of wild-type individuals. Altogether, this combination of observational and experimental research strongly suggests thatperis a master regulator of biological rhythms and may contribute to the observed life cycle differences between bivoltine (two generation) and univoltine (one generation)O. nubilalis. HighlightsNatural ecotypes with divergentperiod(per) genotypes differ in their daily and seasonal responses to photoperiodLater daily activity, reduced diapause incidence, and shorter post-diapause development is associated with reducedpermRNA abundanceperis essential for short-day recognition and daily timingReducedpergene dosage shortened post-diapause development and delayed locomotor activitymore » « less
-
Abstract BackgroundAstyanax mexicanusis a well‐established fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. Despite important progress in the deployment of new technologies, deep mechanistic insights into the genetic basis of evolution, development, and behavior have been limited by a lack of transgenic lines commonly used in genetic model systems. ResultsHere, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficientTol2system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter expresses enhanced green fluorescent protein ubiquitously throughout development in a surface population ofAstyanax. To define specific cell‐types, a Cntnap2‐mCherry construct labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. ConclusionThe lines provide proof‐of‐principle for the application ofTol2transgenic technology inA. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype‐phenotype gap.more » « less
-
PremiseEocene floras of Patagonia document biotic response to the final separation of Gondwana. The conifer genusAraucaria, distributed worldwide during the Mesozoic, has a disjunct extant distribution between South America and Australasia. Fossils assigned to AustralasianAraucariaSect.Eutactausually are represented by isolated organs, making diagnosis difficult.Araucaria pichileufensisE.W. Berry, from the middle Eocene Río Pichileufú (RP) site in Argentine Patagonia, was originally placed in Sect.Eutactaand later reported from the early Eocene Laguna del Hunco (LH) locality. However, the relationship ofA. pichileufensisto Sect.Eutactaand the conspecificity of theAraucariamaterial among these Patagonian floras have not been tested using modern methods. MethodsWe review the type material ofA. pichileufensisalongside large (n= 192) new fossil collections ofAraucariafromLHandRP, including multi‐organ preservation of leafy branches, ovuliferous complexes, and pollen cones. We use a total evidence phylogenetic analysis to analyze relationships of the fossils to Sect.Eutacta. ResultsWe describeAraucaria huncoensissp. nov. fromLHand improve the whole‐plant concept forAraucaria pichileufensisfromRP. The two species respectively resolve in the crown and stem of Sect.Eutacta. ConclusionsOur results confirm the presence and indicate the survival of Sect.Eutactain South America during early Antarctic separation. The exceptionally complete fossils significantly predate several molecular age estimates for crownEutacta. The differentiation of twoAraucariaspecies demonstrates conifer turnover during climate change and initial South American isolation from the early to middle Eocene.more » « less
An official website of the United States government
