PremiseHerbarium specimens have been used to detect climate‐induced shifts in flowering time by using the day of year of collection (DOY) as a proxy for first or peak flowering date. Variation among herbarium sheets in their phenological status, however, undermines the assumption thatDOYaccurately represents any particular phenophase. Ignoring this variation can reduce the explanatory power of pheno‐climatic models (PCMs) designed to predict the effects of climate on flowering date. MethodsHere we present a protocol for the phenological scoring of imaged herbarium specimens using an ImageJ plugin, and we introduce a quantitative metric of a specimen's phenological status, the phenological index (PI), which we use inPCMs to control for phenological variation among specimens ofStreptanthus tortuosus(Brassicaceeae) when testing for the effects of climate onDOY. We demonstrate that includingPIas an independent variable improves model fit. ResultsIncludingPIinPCMs increased the modelR2relative toPCMs that excludedPI; regression coefficients for climatic parameters, however, remained constant. DiscussionOur protocol provides a simple, quantitative phenological metric for any observed plant. IncludingPIinPCMs increasesR2and enables predictions of theDOYof any phenophase under any specified climatic conditions.
more »
« less
Eocene Araucaria Sect. Eutacta from Patagonia and floristic turnover during the initial isolation of South America
PremiseEocene floras of Patagonia document biotic response to the final separation of Gondwana. The conifer genusAraucaria, distributed worldwide during the Mesozoic, has a disjunct extant distribution between South America and Australasia. Fossils assigned to AustralasianAraucariaSect.Eutactausually are represented by isolated organs, making diagnosis difficult.Araucaria pichileufensisE.W. Berry, from the middle Eocene Río Pichileufú (RP) site in Argentine Patagonia, was originally placed in Sect.Eutactaand later reported from the early Eocene Laguna del Hunco (LH) locality. However, the relationship ofA. pichileufensisto Sect.Eutactaand the conspecificity of theAraucariamaterial among these Patagonian floras have not been tested using modern methods. MethodsWe review the type material ofA. pichileufensisalongside large (n= 192) new fossil collections ofAraucariafromLHandRP, including multi‐organ preservation of leafy branches, ovuliferous complexes, and pollen cones. We use a total evidence phylogenetic analysis to analyze relationships of the fossils to Sect.Eutacta. ResultsWe describeAraucaria huncoensissp. nov. fromLHand improve the whole‐plant concept forAraucaria pichileufensisfromRP. The two species respectively resolve in the crown and stem of Sect.Eutacta. ConclusionsOur results confirm the presence and indicate the survival of Sect.Eutactain South America during early Antarctic separation. The exceptionally complete fossils significantly predate several molecular age estimates for crownEutacta. The differentiation of twoAraucariaspecies demonstrates conifer turnover during climate change and initial South American isolation from the early to middle Eocene.
more »
« less
- PAR ID:
- 10376655
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- American Journal of Botany
- Volume:
- 107
- Issue:
- 5
- ISSN:
- 0002-9122
- Format(s):
- Medium: X Size: p. 806-832
- Size(s):
- p. 806-832
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract AimsBryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (GPH,GSPH). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes. Study SiteSpruce–fir forests on Whiteface Mountain, NY,USA. MethodsWe characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFTs). We testedGPHandGSPHrelative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis) using indicator species analysis, ordination, and regression. ResultsCanopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. TheGPHwas consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens,Hypnum imponens, andTetraphis pellucida), and (b)FDisbased on threePFTs (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPHin the remaining species or traits, or forGSPHin general; gap width (12–44 m) was not related to environmental or bryophyte community gradients. ConclusionsThe observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities.more » « less
-
ABSTRACT BackgroundIn Latin America, there is a high incidence of vampire bat‐transmitted rabies in cattle causing increased mortality of livestock, which heavily impacts the agricultural sector. Anticoagulants‐based control methods for the common vampire bat (Desmodus rotundus) have been employed continuously since the 1970s with various methods of application, presentations, doses and active ingredients. Studies from half a century ago still serve as a reference for the current use of anticoagulants for bat‐borne rabies control in Latin America. The objective of this study was to structurally and bibliometrically review literature on the use of anticoagulants for the control ofD. rotundusas a means of rabies control. Materials & MethodsScientific literature on the use of anticoagulant products forD. rotunduscontrol was obtained, reviewed and analysed. Articles were retrieved from Scopus and Web of Science databases. Research articles from 1971 to 2021 in Spanish, English and Portuguese were included in the review. Results were visualised using RStudio, Bibliometrix and VOSviewer. ResultsThe body of literature indicates effectiveness of up to 100% in the use of anticoagulants to induce bat mortality. The effectiveness of anticoagulants for rabies control, however, remains uncertain. No evidence was found to support or refute the use of anticoagulants for rabies control. DiscussionInstead, literature suggests that disturbing bat colonies increases rabies prevalence. This finding suggests that anticoagulants may have the opposite intended effect on rabies control and highlights the importance of further research on the practical methods for bat‐borne rabies prevention. ConclusionField experimental studies that include control groups over areas and periods that account forD. rotundusecology are needed to determine the effectiveness of anticoagulants for rabies control in livestock. In conclusion, the use of anticoagulants for rabies control is questionable.more » « less
-
Abstract Staphylococcus aureusis an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users.S. aureusconcentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk ofS. aureusinfections from environmental waters,S. aureussurvival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measureS. aureusin turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhancedS. aureussurvival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of Oʻahu, Hawaiʻi.S. aureuswas detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations ofS. aureuswere in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmentalS. aureusconcentrations.S. aureuspersistence over the extent of the experiment was the greatest in high turbidity microcosms with T90's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence ofS. aureuscommunities that may increase the risk of exposure in environmental waters. Practitioner PointsStaphylococcus aureusconcentrations, survival, and persistence were assessed in environmental fresh and brackish waters.Experimental design preserved in situ conditions to measureS. aureussurvival.Higher initialS. aureusconcentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters.Water turbidity and salinity were both positively associated withS. aureusconcentrations and persistence.Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk toS. aureus.more » « less
-
PremisePolyploidy is known to cause physiological changes in plants which, in turn, can affect species interactions. One major physiological change predicted in polyploid plants is a heightened demand for growth‐limiting nutrients. Consequently, we expect polyploidy to cause an increased reliance on the belowground mutualists that supply these growth‐limiting nutrients. An important first step in investigating how polyploidy affects nutritional mutualisms in plants, then, is to characterize differences in the rate at which diploids and polyploids interact with belowground mutualists. MethodsWe usedHeuchera cylindrica(Saxifragaceae) to test how polyploidy influences interactions with arbuscular mycorrhizal fungi (AMF). Here we first confirmed the presence ofAMFinH. cylindrica, and then we used field‐collected specimens to quantify and compare the presence ofAMFstructures while controlling for site‐specific variation. ResultsTetraploids had higher colonization rates as measured by total, hyphal, and nutritional‐exchange structures; however, we found that diploids and tetraploids did not differ in vesicle colonization rates. ConclusionsThe results suggest that polyploidy may alter belowground nutritional mutualisms with plants. Because colonization by nutritional‐exchange structures was higher in polyploids but vesicle colonization was not, polyploids might form stronger associations with theirAMFpartners. Controlled experiments are necessary to test whether this pattern is driven by the direct effect of polyploidy onAMFcolonization.more » « less
An official website of the United States government
