skip to main content


Title: An LPTV Noise Cancellation Technique for a 0.9-V Filtering-by-Aliasing Receiver Front-End with >67-dB Stopband Rejection
A linear periodically time-varying (LPTV) noise cancellation technique for filtering-by-aliasing (FA) receivers is presented in this paper. Fabricated in a 28-nm CMOS process, it improves the noise Figure (NF) by about 3 dB while achieving over 67-dB stopband rejection with a transition bandwidth of only four times the RF BW. A minimum in-band NF of 3.2 dB is demonstrated. With an upfront -path filter to further enhance the linearity, the measured out-of-band IIP 3 is + 18 dBm and the blocker 1-dB compression point is + 9 dBm. Operating under a 0.9V supply, it consumes 61-mW power at 500-MHz LO.  more » « less
Award ID(s):
1810268
PAR ID:
10126476
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Custom Integrated Circuits Conference
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This letter presents a 27.5–46.2-GHz broadband low-noise amplifier (LNA) featuring IP3 enhancement. The LNA bandwidth (BW) is extended by implementing dual-resonant input matching and a broadband output network. The LNA IP3 is enhanced by incorporating parallel PMOS and NMOS paths in the second stage, with their output currents combined through a three-winding transformer. Implemented using the GlobalFoundries 45-nm CMOS silicon-on insulator (SOI) process, the LNA demonstrates 27.5–46.2 GHz effective BW, 2.1 dB minimum noise figure (NF), and 19.8 dB peak gain. The measured IIP3 is − 3.6 dBm at 34 GHz under 25.5 mW DC power consumption. Compared to recently reported broadband LNAs with a similar frequency range, this design achieves the state-of-the-art NF, IIP3, and figure-of-merit (FoM). 
    more » « less
  2. This paper demonstrates the monolithic integration of a substrate-integrated waveguide bandpass filter (BPF) and a low-noise amplifier (LNA) at F-band, fabricated in a 70-nm GaN-on-SiC technology. The three-stage LNA alone achieves a state-of-the-art average noise figure of 3.6 dB over 87–115 GHz. The LNA + BPF exhibits a peak gain of 13.6 dB over a 3 dB bandwidth of 17 GHz from 104 to 121 GHz. The average noise figure is 4.9 dB over 87–115 GHz. The OP1 dB and saturated output power are 17.6dBm and >20 dBm, respectively. 
    more » « less
  3. TPC of IEEE ESSCIRC Conference (Ed.)
    This paper presents an mmWave FMCW radar that can achieve sub-centimeter-scale range resolution at 14- GHz chirp-bandwidth while maintaining the radar range beyond 50 meters. To meet the requirements on power efficiency, chirp linearity, and signal-to-noise ratio (SNR), a phase-locked steppedchirp FMCW radar architecture is introduced. Specifically, a fully integrated radar transceiver comprising an interleaved frequency-segmented phase-locked transmitter and a segmented receiver architecture with high sensitivity is presented. The proposed design addresses the limitations of conventional typeII phase-locked loops (PLLs) in extending the radar bandwidth across multiple sub-bands with identical chirp profiles. Fabricated in a 22nm FD-SOI technology, the prototype chip comprises two sub-bands with 14 GHz of free-running bandwidth and 10 GHz of phase-locked bandwidth. The system achieves -101.7 dBc/Hz phase noise at 1 MHz offset, 8 dBm of effective isotropic radiated power (EIRP), 10 dB noise figure (NF), and 362.6 mW collective power consumption of transmitter and receiver arrays. 
    more » « less
  4. We report InGaAs/InP based p-i-n photodiodes with an external quantum efficiency (EQE) above 98% from 1510 nm to 1575 nm. For surface normal photodiodes with a diameter of 80 µm, the measured 3-dB bandwidth is 3 GHz. The saturation current is 30.5 mA, with an RF output power of 9.3 dBm at a bias of −17 V at 3 GHz.

     
    more » « less
  5. Abstract

    A single tunable filter simplifies complexity, reduces insertion loss, and minimizes size compared to frequency switchable filter banks commonly used for radio frequency (RF) band selection. Magnetostatic wave (MSW) filters stand out for their wide, continuous frequency tuning and high-quality factor. However, MSW filters employing electromagnets for tuning consume excessive power and space, unsuitable for consumer wireless applications. Here, we demonstrate miniature and high selectivity MSW tunable filters with zero static power consumption, occupying less than 2 cc. The center frequency is continuously tunable from 3.4 GHz to 11.1 GHz via current pulses of sub-millisecond duration applied to a small and nonvolatile magnetic bias assembly. This assembly is limited in the area over which it can achieve a large and uniform magnetic field, necessitating filters realized from small resonant cavities micromachined in thin films of Yttrium Iron Garnet. Filter insertion loss of 3.2 dB to 5.1 dB and out-of-band third order input intercept point greater than 41 dBm are achieved. The filter’s broad frequency range, compact size, low insertion loss, high out-of-band linearity, and zero static power consumption are essential for protecting RF transceivers from interference, thus facilitating their use in mobile applications like IoT and 6 G networks.

     
    more » « less