This paper demonstrates the monolithic integration of a substrate-integrated waveguide bandpass filter (BPF) and a low-noise amplifier (LNA) at F-band, fabricated in a 70-nm GaN-on-SiC technology. The three-stage LNA alone achieves a state-of-the-art average noise figure of 3.6 dB over 87–115 GHz. The LNA + BPF exhibits a peak gain of 13.6 dB over a 3 dB bandwidth of 17 GHz from 104 to 121 GHz. The average noise figure is 4.9 dB over 87–115 GHz. The OP1 dB and saturated output power are 17.6dBm and >20 dBm, respectively.
more »
« less
A 27.5–46.2-GHz Broadband Low Noise Amplifier With IP3 Enhancement
This letter presents a 27.5–46.2-GHz broadband low-noise amplifier (LNA) featuring IP3 enhancement. The LNA bandwidth (BW) is extended by implementing dual-resonant input matching and a broadband output network. The LNA IP3 is enhanced by incorporating parallel PMOS and NMOS paths in the second stage, with their output currents combined through a three-winding transformer. Implemented using the GlobalFoundries 45-nm CMOS silicon-on insulator (SOI) process, the LNA demonstrates 27.5–46.2 GHz effective BW, 2.1 dB minimum noise figure (NF), and 19.8 dB peak gain. The measured IIP3 is − 3.6 dBm at 34 GHz under 25.5 mW DC power consumption. Compared to recently reported broadband LNAs with a similar frequency range, this design achieves the state-of-the-art NF, IIP3, and figure-of-merit (FoM).
more »
« less
- Award ID(s):
- 1956297
- PAR ID:
- 10442742
- Date Published:
- Journal Name:
- IEEE Microwave and Wireless Technology Letters
- ISSN:
- 2771-957X
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A linear periodically time-varying (LPTV) noise cancellation technique for filtering-by-aliasing (FA) receivers is presented in this paper. Fabricated in a 28-nm CMOS process, it improves the noise Figure (NF) by about 3 dB while achieving over 67-dB stopband rejection with a transition bandwidth of only four times the RF BW. A minimum in-band NF of 3.2 dB is demonstrated. With an upfront -path filter to further enhance the linearity, the measured out-of-band IIP 3 is + 18 dBm and the blocker 1-dB compression point is + 9 dBm. Operating under a 0.9V supply, it consumes 61-mW power at 500-MHz LO.more » « less
-
This paper presents a new continually-stepped variable gain low-noise-amplifier (CSVG-LNA) for millimeter-wave (mm-wave) 5G communications. The proposed variable-gain functionality in a two-stage LNA is achieved by incorporating a tunable-transformer at the 2nd-stage. The tunability in coupling-coefficient of the transformer allows to change the output matching of the LNA in a continuous fashion thus enabling a design of CSVG-LNA. The proposed CSVG-LNA alleviates high power consumption and large noise-figure (NF) variation problems in traditional approaches. To validate the proposed idea, we fabricated a CSVG-LNA in 65-nm CMOS process. The CSVG-LNA achieves measured 6.2dB of gain-tunability range while producing 18.2dB of peak S21 and <;4.1dB of NF 28GHz. Further, the NF variation is only ~0.2dB across the entire 6.2dB gain-tuning range. The 3dB bandwidth of CSVG-LNA is about 12GHz (22-34GHz) while it consumes only 9.8mW of dc power. The CSVG-LNA occupies a compact core area of 0.2mm2. The proposed CSVG-LNA achieves 1.5X improvement in FoM in comparison to state-of-the-arts mm-wave variable-gain CMOS LNAs.more » « less
-
This work presents an interference-adaptive Gallium Nitride (GaN) low-noise amplifier (LNA) front-end with orthogonal frequency and linearity tuning for applications in communication base stations, radar and electronic warfare (EW). The system operates between 2–6 GHz and provides a sub 5 ms tuning time for an input power tuning range of 40 dB. The orthogonal tuning consists of two phases: 1. frequency tuning with four tunable bandpass and bandstop filters for interference rejection, 2. linearity tuning with a combination of coarse tuning through look-up table (LUT) and fine-tuning through incremental adaptation to trade off power with linearity. GaN LNA’s linearity can be adjusted between P textsubscript 1dB,IN = -10 and 1.5 dBm with output P textsubscript 1dB up to 25 dBm (11.5 dB range) with the LNA power changing from 500 mW to 2 W (x4 increase). The average LNA power with orthogonal frequency and linearity tuning decreases by 56% as compared with the system operating at the worst-case no tuning condition. Two systems involving commercial filters and custom cavity resonator-based filters were constructed. The filters further increase the system P textsubscript 1dB,IN by the filter rejection of the interference signal. The rest of the controls consume about 10% of the worst-case condition LNA power.more » « less
-
In this letter, we present a dual-feed near-field antenna (NFA) with dierent sensing depths for noninvasive internal body temperature measurements using microwave radiometry. The two feeds correspond to dfferent spatial power densities in the tissues, providing more information for temperature estimation. An on-chip 1.4-GHz Dicke radiometer with a switch and low-noise, high-gain amplifier is designed using enhancement-mode 0.18-um InGaAs technology. The radiometer shows 45 dB of gain and 1.26-dB noise figure (NF) at 1.4 GHz. The Dicke radiometer includes an SP3T switch connected to a noise source and the two feeds of the NFA. Measurements are performed on a skin-muscle phantom to monitor temperature. The temperature information obtained from the two antenna feeds is used to estimate the temperature of both the skin (20 deg C) and muscle (34 deg C) phantoms with average errors around 1:58 deg C and 0:7 deg C, respectively. The results show usefulness of spatial pattern diversity for estimating layered tissue temperatures.more » « less
An official website of the United States government

