skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An LPTV Noise Cancellation Technique for a 0.9-V Filtering-by-Aliasing Receiver Front-End with >67-dB Stopband Rejection
A linear periodically time-varying (LPTV) noise cancellation technique for filtering-by-aliasing (FA) receivers is presented in this paper. Fabricated in a 28-nm CMOS process, it improves the noise Figure (NF) by about 3 dB while achieving over 67-dB stopband rejection with a transition bandwidth of only four times the RF BW. A minimum in-band NF of 3.2 dB is demonstrated. With an upfront -path filter to further enhance the linearity, the measured out-of-band IIP 3 is + 18 dBm and the blocker 1-dB compression point is + 9 dBm. Operating under a 0.9V supply, it consumes 61-mW power at 500-MHz LO.  more » « less
Award ID(s):
1810268
PAR ID:
10126476
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Custom Integrated Circuits Conference
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This letter presents a 27.5–46.2-GHz broadband low-noise amplifier (LNA) featuring IP3 enhancement. The LNA bandwidth (BW) is extended by implementing dual-resonant input matching and a broadband output network. The LNA IP3 is enhanced by incorporating parallel PMOS and NMOS paths in the second stage, with their output currents combined through a three-winding transformer. Implemented using the GlobalFoundries 45-nm CMOS silicon-on insulator (SOI) process, the LNA demonstrates 27.5–46.2 GHz effective BW, 2.1 dB minimum noise figure (NF), and 19.8 dB peak gain. The measured IIP3 is − 3.6 dBm at 34 GHz under 25.5 mW DC power consumption. Compared to recently reported broadband LNAs with a similar frequency range, this design achieves the state-of-the-art NF, IIP3, and figure-of-merit (FoM). 
    more » « less
  2. This paper demonstrates the monolithic integration of a substrate-integrated waveguide bandpass filter (BPF) and a low-noise amplifier (LNA) at F-band, fabricated in a 70-nm GaN-on-SiC technology. The three-stage LNA alone achieves a state-of-the-art average noise figure of 3.6 dB over 87–115 GHz. The LNA + BPF exhibits a peak gain of 13.6 dB over a 3 dB bandwidth of 17 GHz from 104 to 121 GHz. The average noise figure is 4.9 dB over 87–115 GHz. The OP1 dB and saturated output power are 17.6dBm and >20 dBm, respectively. 
    more » « less
  3. This paper introduces a W-band sequential power amplifier (PA) \cite{0th} with a novel output network designed to minimize passive and combiner losses, while reducing the overall footprint compared to conventional sequential and Doherty PAs\cite{1st}. An isolated output combiner sums two PAs operating in two different modes: the main amplifier operates in class AB and the auxiliary amplifier operates in class C. The measured PA achieves a saturated output power ($$\mathbf{P_{sat}}$$) of 13 dBm and a gain of 12.5 dB with 3 dB bandwidth from 79.5 GHz to 94.5 GHz. Additionally, it demonstrates a peak Power Added Efficiency (PAE) of 19.4\% and a 14.6\% PAE at 6 dB power back-off (PBO) at 87.5 GHz. Furthermore, the PA achieves a data rate of 12 Gb/s for a 16QAM signal with an average output power of 5 dBm, an average PAE of 10\%, and an EVM (RMS) of -20 dB. The PA was fabricated in 16-nm FinFet technology with core area of 0.15mm$^2$. To the authors’ knowledge, this PA has the highest PAE at 6dB PBO for CMOS PAs operating in the W-Band. 
    more » « less
  4. TPC of IEEE ESSCIRC Conference (Ed.)
    This paper presents an mmWave FMCW radar that can achieve sub-centimeter-scale range resolution at 14- GHz chirp-bandwidth while maintaining the radar range beyond 50 meters. To meet the requirements on power efficiency, chirp linearity, and signal-to-noise ratio (SNR), a phase-locked steppedchirp FMCW radar architecture is introduced. Specifically, a fully integrated radar transceiver comprising an interleaved frequency-segmented phase-locked transmitter and a segmented receiver architecture with high sensitivity is presented. The proposed design addresses the limitations of conventional typeII phase-locked loops (PLLs) in extending the radar bandwidth across multiple sub-bands with identical chirp profiles. Fabricated in a 22nm FD-SOI technology, the prototype chip comprises two sub-bands with 14 GHz of free-running bandwidth and 10 GHz of phase-locked bandwidth. The system achieves -101.7 dBc/Hz phase noise at 1 MHz offset, 8 dBm of effective isotropic radiated power (EIRP), 10 dB noise figure (NF), and 362.6 mW collective power consumption of transmitter and receiver arrays. 
    more » « less
  5. This article presents a new notch steering scheme for hybrid beamforming transmitters (TXs) aimed at suppressing spatial interference, thereby enhancing the signal-to-interference-plus-noise ratio (SINR) to support spatial multiplexing. Built upon existing phased arrays, this scheme integrates an auxiliary-path vector modulator (VM) into each antenna element, which in turn, forms an interference-canceling beam. By spatially combining the array factors (AFs) of the main beam and the interference-canceling beam, a deep spatial notch is created while ensuring minimal main-beam power degradation. Unlike the conventional zero-forcing method that requires matrix inversion in digital for spatial notch creation, our scheme enables the computation of antenna weights in analog, significantly reducing the computational cost and latency. Leveraging this new notch steering scheme, we develop a 28-GHz four-element fully connected (FC) hybrid beamforming TX array using the GlobalFoundries 45-nm CMOS Silicon-on-Insulator (SOI) process. It is capable of simultaneously transmitting two independent, wideband data streams (DSs) in the same polarization toward two directions. In probing-based measurements, each TX channel delivers 19.7-dBm OP1 dB, 20.4-dBm PSAT , and 30.6% peak power-added efficiency (PAE) at 29 GHz, demonstrating state-of-the-art TX linearity and efficiency. In over-the-air (OTA) measurements, the packaged TX array achieves 29.8-dBm EIRP1 dB and is able to steer a spatial notch outside the −10-dB beamwidth of the main beam, with a notch depth of >35 dB and a main-beam power degradation of < 0.8 dB. Moreover, in spatial multiplexing demonstrations, the TX array is capable of transmitting a 400-MHz 64-quadrature amplitude modulation (QAM) signal to the intended receiver (RX) in the first DS, while suppressing the co-channel continuous-wave or wideband modulated interference created by the second DS with a high SINR. 
    more » « less