skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cell Communication Network Factor 4 (CCN4/WISP1) Shifts Melanoma Cells from a Fragile Proliferative State to a Resilient Metastatic State
Introduction—Cellular communication network factor 4 (CCN4/WISP1) is a secreted matricellular protein that stimulates metastasis in multiple malignancies but has an unclear impact on phenotypic changes in melanoma. Recent data using cells edited via a double-nickase CRISPR/Cas9 approach suggest that CCN4/WISP1 stimulates invasion and metastasis of melanoma cells. While these data also suggest that loss of CCN4/WISP1 increases cell proliferative, the CRISPR approach used may be an alternative explanation rather than the loss of gene function. Methods—To test whether CCN4/WISP1 also influences the proliferative phenotype of melanoma cells, we used mouse melanoma models and knocked out Ccn4 using a homologydirected repair CRISPR/Cas9 system to generate pools of Ccn4-knockout cells. The resulting edited cell pools were compared to parental cell lines using an ensemble of in vitro and in vivo assays. Results—In vitro assays using knockout pools supported previous findings that CCN4/WISP1 promoted an epithelial– mesenchymal-like transition in melanoma cells and stimulated invasion and metastasis. While Ccn4 knockout also enhanced cell growth in optimal 2D culture conditions, the knockout suppressed certain cell survival signaling pathways and rendered cells less resistant to stress conditions. Tumor cell growth assays at sub-optimal conditions in vitro, quantitative analysis of tumor growth assays in vivo, and transcriptomics analysis of human melanoma cell lines were also used to quantify changes in phenotype and generalize the findings. Conclusions—In addition to stimulating invasion and metastasis of melanoma cells, the results suggested that CCN4/WISP1 repressed cell growth and simultaneously enhanced cell survival.  more » « less
Award ID(s):
1644932
PAR ID:
10126856
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Cellular and Molecular Bioengineering
ISSN:
1865-5025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modeling metastasis in vivo with animals is a priority for both revealing mechanisms of tumor dissemination and developing therapeutic methods. While conventional intravenous injection of tumor cells provides an efficient and consistent system for studying tumor cell extravasation and colonization, studying spontaneous metastasis derived from orthotopic tumor sites has the advantage of modeling more aspects of the metastatic cascade, but is challenging as it is difficult to detect small numbers of metastatic cells. In this work, we developed an approach for quantifying spontaneous metastasis in the syngeneic mouse B16 system using real time PCR. We first transduced B16 cells with lentivirus expressing firefly luciferase Luc2 gene for bioluminescence imaging. Next, we developed a real time quantitative PCR (qPCR) method for the detection of luciferase-expressing, metastatic tumor cells in mouse lungs and other organs. To illustrate the approach, we quantified lung metastasis in both spontaneous and experimental scenarios using B16F0 and B16F10 cells in C57BL/6Ncrl and NOD-Scid Gamma (NSG) mice. We tracked B16 melanoma metastasis with both bioluminescence imaging and qPCR, which were found to be self-consistent. Using this assay, we can quantitatively detect one Luc2 positive tumor cell out of 10 4 tissue cells, which corresponds to a metastatic burden of 1.8 × 10 4 metastatic cells per whole mouse lung. More importantly, the qPCR method was at least a factor of 10 more sensitive in detecting metastatic cell dissemination and should be combined with bioluminescence imaging as a high-resolution, end-point method for final metastatic cell quantitation. Given the rapid growth of primary tumors in many mouse models, assays with improved sensitivity can provide better insight into biological mechanisms that underpin tumor metastasis. 
    more » « less
  2. null (Ed.)
    Breast cancer cells can metastasize either as single cells or as clusters to distant organs from the primary tumor site. Cell clusters have been shown to possess higher metastatic potential compared to single cells. The organ microenvironment is critical in regulating the ultimate phenotype, specifically, the dormant versus proliferative phenotypes, of these clusters. In the context of breast cancer brain metastasis (BCBM), tumor cell cluster–organ microenvironment interactions are not well understood, in part, due to the lack of suitable biomimetic in vitro models. To address this need, herein, we report a biomaterial-based model, utilizing hyaluronic acid (HA) hydrogels with varying stiffnesses to mimic the brain microenvironment. Cell spheroids were used to mimic cell clusters. Using 100–10 000 MDA-MB-231Br BCBM cells, six different sizes of cell spheroids were prepared to study the impact of cluster size on dormancy. On soft HA hydrogels (∼0.4 kPa), irrespective of spheroid size, all cell spheroids attained a dormant phenotype, whereas on stiff HA hydrogels (∼4.5 kPa), size dependent switch between the dormant and proliferative phenotypes was noted ( i.e. , proliferative phenotype ≥5000 cell clusters < dormant phenotype), as tested via EdU and Ki67 staining. Furthermore, we demonstrated that the matrix stiffness driven dormancy was reversible. Such biomaterial systems provide useful tools to probe cell cluster–matrix interactions in BCBM. 
    more » « less
  3. Abstract Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which regulates tumor growth and survival. Our goal is to delineate the detailed oncogenic role of TNFAIP8 in skin cancer development and progression. Here we demonstrated that higher expression of TNFAIP8 is associated with basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma development in patient tissues. Induction of TNFAIP8 expression by TNFα or by ectopic expression of TNFAIP8 in SCC or melanoma cell lines resulted in increased cell growth/proliferation. Conversely, silencing of TNFAIP8 decreased cell survival/cell migration in skin cancer cells. We also showed that miR-205-5p targets the 3′UTR of TNFAIP8 and inhibits TNFAIP8 expression. Moreover, miR-205-5p downregulates TNFAIP8 mediated cellular autophagy, increased sensitivity towards the B-RAF V600E mutant kinase inhibitor vemurafenib, and induced cell apoptosis in melanoma cells. Collectively our data indicate that miR-205-5p acts as a tumor suppressor in skin cancer by targeting TNFAIP8. 
    more » « less
  4. Metastasis, the leading cause of death in cancer patients, requires the invasion of tumor cells through the stroma in response to migratory cues, in part provided by the extracellular matrix (ECM). Recent advances in proteomics have led to the identification of hundreds of ECM proteins, which are more abundant in tumors relative to healthy tissue. Our goal was to develop a pipeline to easily predict which ECM proteins are more likely to have an effect on cancer invasion and metastasis. We evaluated the effect of four ECM proteins upregulated in breast tumor tissue in multiple human breast cancer cell lines in three assays. There was no linear relationship between cell adhesion to ECM proteins and ECM-driven 2D cell migration speed, persistence, or 3D invasion. We then used classifiers and partial-least squares regression analysis to identify which metrics best predicted ECM-driven 2D migration and 3D invasion responses. We find that ECM-driven 2D cell migration speed or persistence did not predict 3D invasion in response to the same cue. However, cell adhesion, and in particular cell elongation and shape irregularity, accurately predicted the magnitude of ECM-driven 2D migration and 3D invasion. Our models successfully predicted the effect of novel ECM proteins in a cell-line specific manner. Overall, our studies identify the cell morphological features that determine 3D invasion responses to individual ECM proteins. This platform will help provide insight into the functional role of ECM proteins abundant in tumor tissue and help prioritize strategies for targeting tumor-ECM interactions to treat metastasis. 
    more » « less
  5. Background: Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods: We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results: Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions: We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways. 
    more » « less