skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasmoid-mediated reconnection in solar UV bursts
Context . Ultraviolet bursts are transients in the solar atmosphere with an increased impulsive emission in the extreme UV lasting for one to several tens of minutes. They often show spectral profiles indicative of a bi-directional outflow in response to magnetic reconnection. Aims . To understand UV bursts, we study how motions of magnetic elements at the surface can drive the self-consistent formation of a current sheet resulting in plasmoid-mediated reconnection. In particular, we want to study the role of the height of the reconnection in the atmosphere. Methods . We conducted numerical experiments solving the 2D magnetohydrodynamic equations from the solar surface to the upper atmosphere. Motivated by observations, we drove a small magnetic patch embedded in a larger system of magnetic field of opposite polarity. This type of configuration creates an X-type neutral point in the initial potential field. The models are characterized by the (average) plasma- β at the height of this X point. Results . The driving at the surface stretches the X-point into a thin current sheet, where plasmoids appear, accelerating the reconnection, and a bi-directional jet forms. This is consistent with what is expected for UV bursts or explosive events, and we provide a self-consistent model of the formation of the reconnection region in such events. The gravitational stratification gives a natural explanation for why explosive events are restricted to a temperature range around a few 0.1 MK, and the presence of plasmoids in the reconnection process provides an understanding of the observed variability during the transient events on a timescale of minutes. Conclusions . Our numerical experiments provide a comprehensive understanding of UV bursts and explosive events, in particular of how the atmospheric response changes if the reconnection happens at different plasma- β , that is, at different heights in the atmosphere. This analysis also gives new insight into how UV bursts might be related to the photospheric Ellerman bombs.  more » « less
Award ID(s):
1804048
PAR ID:
10127175
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
628
ISSN:
0004-6361
Page Range / eLocation ID:
A8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic reconnection is widely believed to be the fundamental process in the solar atmosphere that underlies magnetic energy release and particle acceleration. This process is responsible for the onset of solar flares, coronal mass ejections, and other explosive events (e.g., jets). Here, we report direct imaging of a prolonged plasma/current sheet along with quasiperiodic magnetic reconnection in the solar corona using ultra-high-resolution observations from the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory and the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The current sheet appeared near a null point in the fan–spine topology and persisted over an extended period (≈20 hr). The length and apparent width of the current sheet were about 6″ and 2″, respectively, and the plasma temperature was ≈10–20 MK. We observed quasiperiodic plasma inflows and outflows (bidirectional jets with plasmoids) at the reconnection site/current sheet. Furthermore, quasiperiodic reconnection at the long-lasting current sheet produced recurrent eruptions (small flares and jets) and contributed significantly to the recurrent impulsive heating of the active region. Direct imaging of a plasma/current sheet and recurrent null-point reconnection for such an extended period has not been reported previously. These unprecedented observations provide compelling evidence that supports the universal model for solar eruptions (i.e., the breakout model) and have implications for impulsive heating of active regions by recurrent reconnection near null points. The prolonged and sustained reconnection for about 20 hr at the breakout current sheet provides new insights into the dynamics and energy release processes in the solar corona. 
    more » « less
  2. Abstract Magnetic reconnection is understood to be the main physical process that facilitates the transformation of magnetic energy into heat, motion, and particle acceleration during solar eruptions. Yet, observational constraints on reconnection region properties and dynamics are limited due to a lack of high-cadence and high-spatial-resolution observations. By studying the evolution and morphology of postreconnected field-lines footpoints, or flare ribbons and vector photospheric magnetic field, we estimate the magnetic reconnection flux and its rate of change with time to study the flare reconnection process and dynamics of the current sheet above. We compare high-resolution imaging data to study the evolution of the fine structure in flare ribbons as ribbons spread away from the polarity inversion line. Using data from two illustrative events (one M- and X-class flare), we explore the relationship between the ribbon-front fine structure and the temporal development of bursts in the reconnection region. Additionally, we use theRibbonDBdatabase to perform statistical analysis of 73 (C- to X-class) flares and identify quasiperiodic pulsation (QPP) properties using the Wavelet Transform. Our main finding is the discovery of QPP signatures in the derived magnetic reconnection rates in both example events and the large flare sample. We find that the oscillation periods range from 1 to 4 minutes. Furthermore, we find nearly cotemporal bursts in Hard X-ray (HXR) emission profiles. We discuss how dynamical processes in the current sheet involving plasmoids can explain the nearly cotemporal signatures of quasiperiodicity in the reconnection rates and HXR emission. 
    more » « less
  3. Abstract Plasmoids (or magnetic islands) are believed to play an important role in the onset of fast magnetic reconnection and particle acceleration during solar flares and eruptions. Direct imaging of flare current sheets and the formation/ejection of multiple plasmoids in extreme-ultraviolet images, along with simultaneous X-ray and radio observations, offers significant insights into the mechanisms driving particle acceleration in solar flares. Here, we present direct imaging of the formation and ejection of multiple plasmoids in flare plasma/current sheets and the associated quasiperiodic pulsations (QPPs) observed at X-ray and radio wavelengths, using observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, RHESSI, and the Fermi Gamma-ray Burst Monitor. These plasmoids propagate bidirectionally upward and downward along the flare current sheet beneath the erupting flux rope during two successive flares associated with confined/failed eruptions. The flux rope exhibits evidence of helical kink instability, with the formation and ejection of multiple plasmoids in the flare current sheet, as predicted in an MHD simulation of a kink-unstable flux rope. RHESSI X-ray images show double coronal sources (“looptop” and higher coronal sources) located at both ends of the flare current/plasma sheet. Moreover, we detect an additional transient faint X-ray source (6–12 keV) located between the double coronal sources, which is cospatial with multiple plasmoids in the flare current sheet. X-ray (soft and hard) and radio (decimetric) observations unveil QPPs (periods ≈ 10 s and 100 s) associated with the ejection and coalescence of plasmoids. These observations suggest that energetic electrons are accelerated during the ejection and coalescence of multiple plasmoids in the flare current sheet. 
    more » « less
  4. We report a detailed analysis of a failed eruption and flare in active region 12018 on 2014 April 3 using multiwavelength observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, IRIS, STEREO, and Hinode/Solar Optical Telescope. At least four jets were observed to emanate from the cusp of this small active region (large bright point) with a null-point topology during the 2 hr prior to the slow rise of a filament. During the filament slow rise multiple plasma blobs were seen, most likely formed in a null-point current sheet near the cusp. The subsequent filament eruption, which was outside the IRIS field of view, was accompanied by a flare but remained confined. During the explosive flare reconnection phase, additional blobs appeared repetitively and moved bidirectionally within the flaring region below the erupting filament. The filament kinked, rotated, and underwent leg–leg reconnection as it rose, yet it failed to produce a coronal mass ejection. Tiny jet-like features in the fan loops were detected during the filament slow rise/preflare phase. We interpret them as signatures of reconnection between the ambient magnetic field and the plasmoids leaving the null-point sheet and streaming along the fan loops. We contrast our interpretation of these tiny jets, which occur within the large-scale context of a failed filament eruption, with the local nanoflare-heating scenario proposed by Antolin et al. 
    more » « less
  5. Abstract Rapid plasma eruptions explosively release energy within Earth’s magnetosphere, at the Sun and at other planets. At Earth, these eruptions, termed plasmoids, occur in the magnetospheric nightside and are associated with sudden brightening of the aurora. The chain of events leading to the plasmoid is one of the longest-standing unresolved questions in space physics. Two competing paradigms have been proposed to explain the course of events. The first asserts that magnetic reconnection changes the magnetic topology in the tail, severing a part of the magnetosphere as plasmoid. The second employs kinetic instabilities that first disrupt the current sheet supporting the magnetotail and launch waves that trigger the topological change to eject the plasmoid. Here we numerically simulate Earth’s magnetosphere at realistic scales using a model that captures the physics underlying both paradigms. We show that both magnetic reconnection and kinetic instabilities are required to induce a global topological reconfiguration of the magnetotail, thereby combining the seemingly contradictory paradigms. Our results help to understand how plasma eruptions may take place, guide spacecraft constellation mission design to capture these ejections in observations and lead to improved understanding of space weather by improving the predictability of the plasmoids. 
    more » « less