Aims. We analyse particle, radio, and X-ray observations during the first relativistic proton event of solar cycle 25 detected on Earth. The aim is to gain insight into the relationship between relativistic solar particles detected in space and the processes of acceleration and propagation in solar eruptive events. Methods. To this end, we used ground-based neutron monitor measurements of relativistic nucleons and space-borne measurements of electrons with similar speed to determine the arrival times of the first particles at 1 AU and to infer their solar release times. We compared the release times with the time histories of non-thermal electrons in the solar atmosphere and their escape to interplanetary space, as traced by radio spectra and X-ray light curves and images. Results. Non-thermal electrons in the corona are found to be accelerated in different regions. Some are confined in closed magnetic structures expanding during the course of the event. Three episodes of electron escape to the interplanetary space are revealed by groups of decametric-to-kilometric type III bursts. The first group appears on the low-frequency side of a type II burst produced by a coronal shock wave. The two latter groups are accompanied at higher frequencies by bursts with rapid driftsmore »
Plasmoid-mediated reconnection in solar UV bursts
Context . Ultraviolet bursts are transients in the solar atmosphere with an increased impulsive emission in the extreme UV lasting for one to several tens of minutes. They often show spectral profiles indicative of a bi-directional outflow in response to magnetic reconnection. Aims . To understand UV bursts, we study how motions of magnetic elements at the surface can drive the self-consistent formation of a current sheet resulting in plasmoid-mediated reconnection. In particular, we want to study the role of the height of the reconnection in the atmosphere. Methods . We conducted numerical experiments solving the 2D magnetohydrodynamic equations from the solar surface to the upper atmosphere. Motivated by observations, we drove a small magnetic patch embedded in a larger system of magnetic field of opposite polarity. This type of configuration creates an X-type neutral point in the initial potential field. The models are characterized by the (average) plasma- β at the height of this X point. Results . The driving at the surface stretches the X-point into a thin current sheet, where plasmoids appear, accelerating the reconnection, and a bi-directional jet forms. This is consistent with what is expected for UV bursts or explosive events, and we provide a more »
- Award ID(s):
- 1804048
- Publication Date:
- NSF-PAR ID:
- 10127175
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 628
- Page Range or eLocation-ID:
- A8
- ISSN:
- 0004-6361
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We gave an extensive study for the quasi-periodic perturbations on the time profiles of the line of sight (LOS) magnetic field in 10 × 10 sub-areas in a solar plage region (corresponds to a facula on the photosphere). The perturbations are found to be associated with the enhancement of He I 10830 Å absorption in a moss region, which is connected to loops with million-degree plasma. FFT analysis to the perturbations gives a kind of spectrum similar to that of Doppler velocity: a number of discrete periods around 5 minutes. The amplitudes of the magnetic perturbations are found to be proportional to magnetic field strength over these sub-areas. In addition, magnetic perturbations lag behind a quarter of the cycle in the phase with respect to the p-mode Doppler velocity. We show that the relationships can be well explained with an MHD solution for the magneto-acoustic oscillations in high- β plasma. Observational analysis also shows that, for the two regions with the stronger and weaker magnetic field, the perturbations are always anti-phased. All findings show that the magnetic perturbations are actually magneto-acoustic oscillations on the solar surface, the photosphere, powered by p-mode oscillations. The findings may provide a new diagnosticmore »
-
Spicules are rapidly evolving fine-scale jets of magnetized plasma in the solar chromosphere. It remains unclear how these prevalent jets originate from the solar surface and what role they play in heating the solar atmosphere. Using the Goode Solar Telescope at the Big Bear Solar Observatory, we observed spicules emerging within minutes of the appearance of opposite-polarity magnetic flux around dominant-polarity magnetic field concentrations. Data from the Solar Dynamics Observatory showed subsequent heating of the adjacent corona. The dynamic interaction of magnetic fields (likely due to magnetic reconnection) in the partially ionized lower solar atmosphere appears to generate these spicules and heat the upper solar atmosphere.
-
Quasi-periodic plasmoid formation at the tip of magnetic streamer structures is observed to occur in experiments on the Big Red Ball as well as in simulations of these experiments performed with the extended magnetohydrodynamics code, NIMROD. This plasmoid formation is found to occur on a characteristic time scale dependent on pressure gradients and magnetic curvature in both experiment and simulation. Single mode, or laminar, plasmoids exist when the pressure gradient is modest, but give way to turbulent plasmoid ejection when the system drive is higher, which produces plasmoids of many sizes. However, a critical pressure gradient is also observed, below which plasmoids are never formed. A simple heuristic model of this plasmoid formation process is presented and suggested to be a consequence of a dynamic loss of equilibrium in the high- $\beta$ region of the helmet streamer. This model is capable of explaining the periodicity of plasmoids observed in the experiment and simulations, and produces plasmoid periods of 90 minutes when applied to two-dimensional models of solar streamers with a height of $3R_\odot$ . This is consistent with the location and frequency at which periodic plasma blobs have been observed to form by Large Angle and Spectrometric Coronograph and Sunmore »
-
Context. Coronal mass ejections (CMEs) on the Sun are the largest explosions in the Solar System that can drive powerful plasma shocks. The eruptions, shocks, and other processes associated to CMEs are efficient particle accelerators and the accelerated electrons in particular can produce radio bursts through the plasma emission mechanism. Aims. Coronal mass ejections and associated radio bursts have been well studied in cases where the CME originates close to the solar limb or within the frontside disc. Here, we study the radio emission associated with a CME eruption on the back side of the Sun on 22 July 2012. Methods. Using radio imaging from the Nançay Radioheliograph, spectroscopic data from the Nançay Decametric Array, and extreme-ultraviolet observations from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft, we determine the nature of the observed radio emission as well as the location and propagation of the CME. Results. We show that the observed low-intensity radio emission corresponds to a type II radio burst or a short-duration type IV radio burst associated with a CME eruption due to breakout reconnection on the back side of the Sun, as suggested by the pre-eruptive magnetic field configuration. The radio emission consists ofmore »