Alzheimer’s disease (AD) is a degenerative brain disease that affects millions of people around the world. As populations in the United States and worldwide age, the prevalence of Alzheimer’s disease will only increase. In turn, the social and financial costs of AD will create a difficult environment for many families and caregivers across the globe.By combining genetic information, brain scans, and clinical data, gathered over time through the Alzheimer’s Disease Neuroimaging Initiative(ADNI), we propose a newJoint High-Order Multi-Modal Multi-Task Feature Learning method to predict the cognitive performance and diagnosis of patients with and without AD.
more »
« less
Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments over Progressions
Incomplete or inconsistent temporal neuroimaging records of patients over time pose a major challenge to accurately predict clinical scores for diagnosing Alzheimer’s Disease (AD). In this paper, we present an unsupervised method to learn enriched imaging biomarker representations that can simultaneously capture the information conveyed by all the baseline neuroimaging measures and the progressive variations of the available follow-up measurements of every participant. Our experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show improved performance in predicting cognitive outcomes thereby demonstrating the effectiveness of our proposed method.
more »
« less
- PAR ID:
- 10127254
- Date Published:
- Journal Name:
- Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
- Volume:
- LNCS 11767
- Page Range / eLocation ID:
- 140-148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With rapid progress in high-throughput genotyping and neuroimaging, researches of complex brain disorders, such as Alzheimer’s Disease (AD), have gained significant attention in recent years. Many prediction models have been studied to relate neuroimaging measures to cognitive status over the progressions when these disease develops. Missing data is one of the biggest challenge in accurate cognitive score prediction of subjects in longitudinal neuroimaging studies. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation for imaging biomarkers that can simultaneously capture both the information conveyed by baseline neuroimaging records and that by progressive variations of varied counts of available follow-up records over time. While the numbers of the brain scans of the participants vary, the learned biomarker representation for every participant is a fixed-length vector, which enable us to use traditional learning models to study AD developments. Our new objective is formulated to maximize the ratio of the summations of a number of L1-norm distances for improved robustness, which, though, is difficult to efficiently solve in general. Thus we derive a new efficient iterative solution algorithm and rigorously prove its convergence. We have performed extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. A performance gain has been achieved to predict four different cognitive scores, when we compare the original baseline representations against the learned representations with enrichments. These promising empirical results have demonstrated improved performances of our new method that validate its effectiveness.more » « less
-
We introduce a novel framework for the classification of functional data supported on nonlinear, and possibly random, manifold domains. The motivating application is the identification of subjects with Alzheimer’s disease from their cortical surface geometry and associated cortical thickness map. The proposed model is based upon a reformulation of the classification problem as a regularized multivariate functional linear regression model. This allows us to adopt a direct approach to the estimation of the most discriminant direction while controlling for its complexity with appropriate differential regularization. Our approach does not require prior estimation of the covariance structure of the functional predictors, which is computationally prohibitive in our application setting. We provide a theoretical analysis of the out-of-sample prediction error of the proposed model and explore the finite sample performance in a simulation setting. We apply the proposed method to a pooled dataset from the Alzheimer’s Disease Neuroimaging Initiative and the Parkinson’s Progression Markers Initiative. Through this application, we identify discriminant directions that capture both cortical geometric and thickness predictive features of Alzheimer’s disease that are consistent with the existing neuroscience literature.more » « less
-
Alzheimer’s Disease (AD) is a progressive memory disorder that causes irreversible cognitive declines, therefore early diagnosis is imperative to prevent the progression of AD. To this end, many biomarker analysis models have been presented for early AD detection. However, these models may not realize the full data potential due to their failure to integrate longitudinal (dynamic) phenotypic data with (static) genetic data. Sometimes, they may not fully utilize both labeled and unlabeled samples either. To overcome these limitations, we propose a semi-supervised enrichment learning method to learn a fixed-length vectorial representation for each participant, by which the static data record can be integrated with the dynamic data records. We have applied our new method on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort and achieved 75% accuracy on multiclass AD progression prediction by one year in advance.more » « less
-
Background: The progressive cognitive decline, an integral component of Alzheimer’s disease (AD), unfolds in tandem with the natural aging process. Neuroimaging features have demonstrated the capacity to distinguish cognitive decline changes stemming from typical brain aging and AD between different chronological points. Objective: To disentangle the normal aging effect from the AD-related accelerated cognitive decline and unravel its genetic components using a neuroimaging-based deep learning approach. Methods: We developed a deep-learning framework based on a dual-loss Siamese ResNet network to extract fine-grained information from the longitudinal structural magnetic resonance imaging (MRI) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. We then conducted genome-wide association studies (GWAS) and post-GWAS analyses to reveal the genetic basis of AD-related accelerated cognitive decline. Results: We used our model to process data from 1,313 individuals, training it on 414 cognitively normal people and predicting cognitive assessment for all participants. In our analysis of accelerated cognitive decline GWAS, we identified two genome-wide significant loci: APOE locus (chromosome 19 p13.32) and rs144614292 (chromosome 11 p15.1). Variant rs144614292 (G > T) has not been reported in previous AD GWA studies. It is within the intronic region of NELL1, which is expressed in neurons and plays a role in controlling cell growth and differentiation. The cell-type-specific enrichment analysis and functional enrichment of GWAS signals highlighted the microglia and immune-response pathways. Conclusions: Our deep learning model effectively extracted relevant neuroimaging features and predicted individual cognitive decline. We reported a novel variant (rs144614292) within the NELL1 gene.more » « less
An official website of the United States government

