skip to main content

Title: Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments over Progressions
Incomplete or inconsistent temporal neuroimaging records of patients over time pose a major challenge to accurately predict clinical scores for diagnosing Alzheimer’s Disease (AD). In this paper, we present an unsupervised method to learn enriched imaging biomarker representations that can simultaneously capture the information conveyed by all the baseline neuroimaging measures and the progressive variations of the available follow-up measurements of every participant. Our experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show improved performance in predicting cognitive outcomes thereby demonstrating the effectiveness of our proposed method.  more » « less
Award ID(s):
1837964 1652943 1849359
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
LNCS 11767
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With rapid progress in high-throughput genotyping and neuroimaging, researches of complex brain disorders, such as Alzheimer’s Disease (AD), have gained significant attention in recent years. Many prediction models have been studied to relate neuroimaging measures to cognitive status over the progressions when these disease develops. Missing data is one of the biggest challenge in accurate cognitive score prediction of subjects in longitudinal neuroimaging studies. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation for imaging biomarkers that can simultaneously capture both the information conveyed by baseline neuroimaging records and that by progressive variations of varied counts of available follow-up records over time. While the numbers of the brain scans of the participants vary, the learned biomarker representation for every participant is a fixed-length vector, which enable us to use traditional learning models to study AD developments. Our new objective is formulated to maximize the ratio of the summations of a number of L1-norm distances for improved robustness, which, though, is difficult to efficiently solve in general. Thus we derive a new efficient iterative solution algorithm and rigorously prove its convergence. We have performed extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. A performance gain has been achieved to predict four different cognitive scores, when we compare the original baseline representations against the learned representations with enrichments. These promising empirical results have demonstrated improved performances of our new method that validate its effectiveness. 
    more » « less
  2. Abstract Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder and the most common type of dementia. AD is characterized by a decline of cognitive function and brain atrophy, and is highly heritable with estimated heritability ranging from 60 to 80 $$\%$$ % . The most straightforward and widely used strategy to identify AD genetic basis is to perform genome-wide association study (GWAS) of the case-control diagnostic status. These GWAS studies have identified over 50 AD related susceptibility loci. Recently, imaging genetics has emerged as a new field where brain imaging measures are studied as quantitative traits to detect genetic factors. Given that many imaging genetics studies did not involve the diagnostic outcome in the analysis, the identified imaging or genetic markers may not be related or specific to the disease outcome. Results We propose a novel method to identify disease-related genetic variants enriched by imaging endophenotypes, which are the imaging traits associated with both genetic factors and disease status. Our analysis consists of three steps: (1) map the effects of a genetic variant (e.g., single nucleotide polymorphism or SNP) onto imaging traits across the brain using a linear regression model, (2) map the effects of a diagnosis phenotype onto imaging traits across the brain using a linear regression model, and (3) detect SNP-diagnosis association via correlating the SNP effects with the diagnostic effects on the brain-wide imaging traits. We demonstrate the promise of our approach by applying it to the Alzheimer’s Disease Neuroimaging Initiative database. Among 54 AD related susceptibility loci reported in prior large-scale AD GWAS, our approach identifies 41 of those from a much smaller study cohort while the standard association approaches identify only two of those. Clearly, the proposed imaging endophenotype enriched approach can reveal promising AD genetic variants undetectable using the traditional method. Conclusion We have proposed a novel method to identify AD genetic variants enriched by brain-wide imaging endophenotypes. This approach can not only boost detection power, but also reveal interesting biological pathways from genetic determinants to intermediate brain traits and to phenotypic AD outcomes. 
    more » « less
  3. Alzheimer’s disease (AD) is a serious neurodegenerative condition that affects millions of individuals across the world. As the average age of individuals in the United States and the world increases, the prevalence of AD will continue to grow. To address this public health problem, the research community has developed computational approaches to sift through various aspects of clinical data and uncover their insights, among which one of the most challenging problem is to determine the biological mechanisms that cause AD to develop. To study this problem, in this paper we present a novel Joint Multi-Modal Longitudinal Regression and Classification method and show how it can be used to identify the cognitive status of the participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort and the underlying biological mechanisms. By intelligently combining clinical data of various modalities (i.e., genetic information and brain scans) using a variety of regularizations that can identify AD-relevant biomarkers, we perform the regression and classification tasks simultaneously. Because the proposed objective is a non-smooth optimization problem that is difficult to solve in general, we derive an efficient iterative algorithm and rigorously prove its convergence. To validate our new method in predicting the cognitive scores of patients and their clinical diagnosis, we conduct comprehensive experiments on the ADNI cohort. Our promising results demonstrate the benefits and flexibility of the proposed method. We anticipate that our new method is of interest to clinical communities beyond AD research and have open-sourced the code of our method online.C 
    more » « less
  4. Alzheimer’s Disease (AD) is a progressive memory disorder that causes irreversible cognitive declines, therefore early diagnosis is imperative to prevent the progression of AD. To this end, many biomarker analysis models have been presented for early AD detection. However, these models may not realize the full data potential due to their failure to integrate longitudinal (dynamic) phenotypic data with (static) genetic data. Sometimes, they may not fully utilize both labeled and unlabeled samples either. To overcome these limitations, we propose a semi-supervised enrichment learning method to learn a fixed-length vectorial representation for each participant, by which the static data record can be integrated with the dynamic data records. We have applied our new method on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort and achieved 75% accuracy on multiclass AD progression prediction by one year in advance. 
    more » « less
  5. Given a population longitudinal neuroimaging measurements defined on a brain network, exploiting temporal dependencies within the sequence of data and corresponding latent variables defined on the graph (i.e., network encoding relationships between regions of interest (ROI)) can highly benefit characterizing the brain. Here, it is important to distinguish time-variant (e.g., longitudinal measures) and time-invariant (e.g., gender) components to analyze them individually. For this, we propose an innovative and ground-breaking Disentangled Sequential Graph Autoencoder which leverages the Sequential Variational Autoencoder (SVAE), graph convolution and semi-supervising framework together to learn a latent space composed of time-variant and time-invariant latent variables to characterize disentangled representation of the measurements over the entire ROIs. Incorporating target information in the decoder with a supervised loss let us achieve more effective representation learning towards improved classification. We validate our proposed method on the longitudinal cortical thickness data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Our method outperforms baselines with traditional techniques demonstrating benefits for effective longitudinal data representation for predicting labels and longitudinal data generation. 
    more » « less