skip to main content


Search for: All records

Award ID contains: 1849359

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Breast cancer is a type of cancer that develops in breast tissues, and, after skin cancer, it is the most commonly diagnosed cancer in women in the United States. Given that an early diagnosis is imperative to prevent breast cancer progression, many machine learning models have been developed in recent years to automate the histopathological classification of the different types of carcinomas. However, many of them are not scalable to large-scale datasets.

    Results

    In this study, we propose the novel Primal-Dual Multi-Instance Support Vector Machine to determine which tissue segments in an image exhibit an indication of an abnormality. We derive an efficient optimization algorithm for the proposed objective by bypassing the quadratic programming and least-squares problems, which are commonly employed to optimize Support Vector Machine models. The proposed method is computationally efficient, thereby it is scalable to large-scale datasets. We applied our method to the public BreaKHis dataset and achieved promising prediction performance and scalability for histopathological classification.

    Availability and implementation

    Software is publicly available at: https://1drv.ms/u/s!AiFpD21bgf2wgRLbQq08ixD0SgRD?e=OpqEmY.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Graphical representations are essential for comprehending high-dimensional data across diverse fields, yet their construction often presents challenges due to the limitations of traditional methods. This paper introduces a novel methodology, Beyond Simplex Sparse Representation (BSSR), which addresses critical issues such as parameter dependencies, scale inconsistencies, and biased data interpretation in constructing similarity graphs. BSSR leverages the robustness of sparse representation to noise and outliers, while incorporating deep learning techniques to enhance scalability and accuracy. Furthermore, we tackle the optimization of the standard simplex, a pervasive problem, by introducing a transformative approach that converts the constraint into a smooth manifold using the Hadamard parametrization. Our proposed Tangent Perturbed Riemannian Gradient Descent (T-PRGD) algorithm provides an efficient and scalable solution for optimization problems with standard simplex or L1-norm sphere constraints. These contributions, including the BSSR methodology, robustness and scalability through deep representation, shift-invariant sparse representation, and optimization on the unit sphere, represent major advancements in the field. Our work offers novel perspectives on data representation challenges and sets the stage for more accurate analysis in the era of big data. 
    more » « less
  3. Chest X-ray (CXR) analysis plays an important role in patient treatment. As such, a multitude of machine learning models have been applied to CXR datasets attempting automated analysis. However, each patient has a differing number of images per angle, and multi-modal learning should deal with the missing data for specific angles and times. Furthermore, the large dimensionality of multi-modal imaging data with the shapes inconsistent across the dataset introduces the challenges in training. In light of these issues, we propose the Fast Multi-Modal Support Vector Machine (FMMSVM) which incorporates modality-specific factorization to deal with missing CXRs in the specific angle. Our model is able to adjust the fine-grained details in feature extraction and we provide an efficient optimization algorithm scalable to a large number of features. In our experiments, FMMSVM shows clearly improved classification performance. 
    more » « less
  4. The COVID-19 pandemic caused by SARS-CoV-2 has emphasized the importance of studying virus-host protein-protein interactions (PPIs) and drug-target interactions (DTIs) to discover effective antiviral drugs. While several computational algorithms have been developed for this purpose, most of them overlook the interplay pathways during infection along PPIs and DTIs. In this paper, we present a novel multipartite graph learning approach to uncover hidden binding affinities in PPIs and DTIs. Our method leverages a comprehensive biomolecular mechanism network that integrates protein-protein, genetic, and virus-host interactions, enabling us to learn a new graph that accurately captures the underlying connected components. Notably, our method identifies clustering structures directly from the new graph, eliminating the need for post-processing steps. To mitigate the detrimental effects of noisy or outlier data in sparse networks, we propose a robust objective function that incorporates the L2,p-norm and a constraint based on the pth-order Ky-Fan norm applied to the graph Laplacian matrix. Additionally, we present an efficient optimization method tailored to our framework. Experimental results demonstrate the superiority of our approach over existing state-of-the-art techniques, as it successfully identifies potential repurposable drugs for SARS-CoV-2, offering promising therapeutic options for COVID-19 treatment. 
    more » « less
  5. Chest X-rays are commonly used for diagnosing and characterizing lung diseases, but the complex morphological patterns in radiographic appearances can challenge clinicians in making accurate diagnoses. To address this challenge, various learning methods have been developed for algorithm-aided disease detection and automated diagnosis. However, most existing methods fail to account for the heterogeneous variability in longitudinal imaging records and the presence of missing or inconsistent temporal data. In this paper, we propose a novel longitudinal learning framework that enriches inconsistent imaging data over sequential time points by leveraging 2D Principal Component Analysis (2D-PCA) and a robust adaptive loss function. We also derive an efficient solution algorithm that ensures both objective and sequence convergence for the non-convex optimization problem. Our experiments on the CheXpert dataset demonstrate improved performance in capturing indicative abnormalities in medical images and achieving satisfactory diagnoses. We believe that our method will be of significant interest to the research community working on medical image analysis. 
    more » « less
  6. Multi-instance learning (MIL) handles data that is organized into sets of instances known as bags. Traditionally, MIL is used in the supervised-learning setting for classifying bags which contain any number of instances. However, many traditional MIL algorithms do not scale efficiently to large datasets. In this paper, we present a novel primal–dual multi-instance support vector machine that can operate efficiently on large-scale data. Our method relies on an algorithm derived using a multi-block variation of the alternating direction method of multipliers. The approach presented in this work is able to scale to large-scale data since it avoids iteratively solving quadratic programming problems which are broadly used to optimize MIL algorithms based on SVMs. In addition, we improve our derivation to include an additional optimization designed to avoid solving a least-squares problem in our algorithm, which increases the utility of our approach to handle a large number of features as well as bags. Finally, we derive a kernel extension of our approach to learn nonlinear decision boundaries for enhanced classification capabilities. We apply our approach to both synthetic and real-world multi-instance datasets to illustrate the scalability, promising predictive performance, and interpretability of our proposed method. 
    more » « less
  7. Histopathological image analysis is critical in cancer diagnosis and treatment. Due to the huge size of histopathological images, most existing works analyze the whole slide pathological image (WSI) as a bag and its patches are considered as instances. However, these approaches are limited to analyzing the patches in a fixed shape, while the malignant lesions can form varied shapes. To address this challenge, we propose the Multi-Instance Multi-Shape Support Vector Machine (MIMSSVM) to analyze the multiple images (instances) jointly where each instance consists of multiple patches in varied shapes. In our approach, we can identify the varied morphologic abnormalities of nuclei shapes from the multiple images. In addition to the multi-instance multi-shape learning capability, we provide an efficient algorithm to optimize the proposed model which scales well to a large number of features. Our experimental results show the proposed MIMSSVM method outperforms the existing SVM and recent deep learning models in histopathological classification. The proposed model also identifies the tissue segments in an image exhibiting an indication of an abnormality which provides utility in the early detection of malignant tumors. 
    more » « less
  8. Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of squared Euclidean distances that may not perform optimally on noisy data sets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared l2-norm distance to center the data, which is not valid when the objective does not use the Euclidean distance. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The experimental results demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods. 
    more » « less
  9. Collaborative localization is an essential capability for a team of robots such as connected vehicles to collaboratively estimate object locations from multiple perspectives with reliant cooperation. To enable collaborative localization, four key challenges must be addressed, including modeling complex relationships between observed objects, fusing observations from an arbitrary number of collaborating robots, quantifying localization uncertainty, and addressing latency of robot communications. In this paper, we introduce a novel approach that integrates uncertainty-aware spatiotemporal graph learning and model-based state estimation for a team of robots to collaboratively localize objects. Specifically, we introduce a new uncertainty-aware graph learning model that learns spatiotemporal graphs to represent historical motions of the objects observed by each robot over time and provides uncertainties in object localization. Moreover, we propose a novel method for integrated learning and model-based state estimation, which fuses asynchronous observations obtained from an arbitrary number of robots for collaborative localization. We evaluate our approach in two collaborative object localization scenarios in simulations and on real robots. Experimental results show that our approach outperforms previous methods and achieves state-of-the-art performance on asynchronous collaborative localization. 
    more » « less
  10. Multi-instance learning (MIL) is an area of machine learning that handles data that is organized into sets of instances known as bags. Traditionally, MIL is used in the supervised-learning setting and is able to classify bags which can contain any number of instances. This property allows MIL to be naturally applied to solve the problems in a wide variety of real-world applications from computer vision to healthcare. However, many traditional MIL algorithms do not scale efficiently to large datasets. In this paper we present a novel Primal-Dual Multi-Instance Support Vector Machine (pdMISVM) derivation and implementation that can operate efficiently on large scale data. Our method relies on an algorithm derived using a multi-block variation of the alternating direction method of multipliers (ADMM). The approach presented in this work is able to scale to large-scale data since it avoids iteratively solving quadratic programming problems which are generally used to optimize MIL algorithms based on SVMs. In addition, we modify our derivation to include an additional optimization designed to avoid solving a least-squares problem during our algorithm; this optimization increases the utility of our approach to handle a large number of features as well as bags. Finally, we apply our approach to synthetic and real-world multi-instance datasets to illustrate the scalability, promising predictive performance, and interpretability of our proposed method. We end our discussion with an extension of our approach to handle non-linear decision boundaries. Code and data for our methods are available online at: https://github.com/minds-mines/pdMISVM.jl. 
    more » « less