skip to main content


Title: Prioritizing Amyloid Imaging Biomarkers in Alzheimer’s Disease via Learning to Rank
We propose an innovative machine learning paradigm enabling precision medicine for AD biomarker discovery. The paradigm tailors the imaging biomarker discovery process to individual characteristics of a given patient. We implement this paradigm using a newly developed learning-to-rank method 𝙿𝙻𝚃𝚁 . The 𝙿𝙻𝚃𝚁 model seamlessly integrates two objectives for joint optimization: pushing up relevant biomarkers and ranking among relevant biomarkers. The empirical study of 𝙿𝙻𝚃𝚁 conducted on the ADNI data yields promising results to identify and prioritize individual-specific amyloid imaging biomarkers based on the individual’s structural MRI data. The resulting top ranked imaging biomarker has the potential to aid personalized diagnosis and disease subtyping.  more » « less
Award ID(s):
1837964
NSF-PAR ID:
10127256
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
MBIA 2019: International Workshop on Multimodal Brain Image Analysis
Volume:
LNCS 11846
Page Range / eLocation ID:
139-148
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an innovative machine learning paradigm enabling precision medicine for prioritizing cognitive assessments according to their relevance to Alzheimer's disease at the individual patient level. The paradigm tailors the cognitive biomarker discovery and cognitive assessment selection process to the brain morphometric characteristics of each individual patient. We implement this paradigm using a newly developed learning-to-rank method PLTR. Our empirical study on the ADNI data yields promising results to identify and prioritize individual-specific cognitive biomarkers as well as cognitive assessment tasks based on the individual's structural MRI data. The resulting top ranked cognitive biomarkers and assessment tasks have the potential to aid personalized diagnosis and disease subtyping. 
    more » « less
  2. Abstract Objective

    Neurodegenerative conditions often manifest radiologically with the appearance of premature aging. Multiple sclerosis (MS) biomarkers related to lesion burden are well developed, but measures of neurodegeneration are less well‐developed. The appearance of premature aging quantified by machine learning applied to structural MRI assesses neurodegenerative pathology. We assess the explanatory and predictive power of “brain age” analysis on disability in MS using a large, real‐world dataset.

    Methods

    Brain age analysis is predicated on the over‐estimation of predicted brain age in patients with more advanced pathology. We compared the performance of three brain age algorithms in a large, longitudinal dataset (>13,000 imaging sessions from >6,000 individual MS patients). Effects of MS, MS disease course, disability, lesion burden, and DMT efficacy were assessed using linear mixed effects models.

    Results

    MS was associated with advanced predicted brain age cross‐sectionally and accelerated brain aging longitudinally in all techniques. While MS disease course (relapsing vs. progressive) did contribute to advanced brain age, disability was the primary correlate of advanced brain age. We found that advanced brain age at study enrollment predicted more disability accumulation longitudinally. Lastly, a more youthful appearing brain (predicted brain age less than actual age) was associated with decreased disability.

    Interpretation

    Brain age is a technically tractable and clinically relevant biomarker of disease pathology that correlates with and predicts increasing disability in MS. Advanced brain age predicts future disability accumulation.

     
    more » « less
  3. Background: Type 1 diabetes (T1D) is a devastating disease with serious health complications. Early T1D biomarkers that could enable timely detection and prevention before the onset of clinical symptoms are paramount but currently unavailable. Despite their promise, omics approaches have so far failed to deliver such biomarkers, likely due to the fragmented nature of information obtained through the single omics approach. We recently demonstrated the utility of parallel multi-omics for the identification of T1D biomarker signatures. Our studies also identified challenges. Methods: Here, we evaluated a novel computational approach of data imputation and amplification as one way to overcome challenges associated with the relatively small number of subjects in these studies. Results: Using proprietary algorithms, we amplified our quadra-omics (proteomics, metabolomics, lipidomics, and transcriptomics) dataset from nine subjects a thousand-fold and analyzed the data using Ingenuity Pathway Analysis (IPA) software to assess the change in its analytical capabilities and biomarker prediction power in the amplified datasets compared to the original. These studies showed the ability to identify an increased number of T1D-relevant pathways and biomarkers in such computationally amplified datasets, especially, at imputation ratios close to the “golden ratio” of 38.2%:61.8%. Specifically, the Canonical Pathway and Diseases and Functions modules identified higher numbers of inflammatory pathways and functions relevant to autoimmune T1D, including novel ones not identified in the original data. The Biomarker Prediction module also predicted in the amplified data several unique biomarker candidates with direct links to T1D pathogenesis. Conclusions: These preliminary findings indicate that such large-scale data imputation and amplification approaches are useful in facilitating the discovery of candidate integrated biomarker signatures of T1D or other diseases by increasing the predictive range of existing data mining tools, especially when the size of the input data is inherently limited. 
    more » « less
  4. Alzheimer's Disease (AD) is a chronic neurodegenerative disease that severely impacts patients' thinking, memory and behavior. To aid automatic AD diagnoses, many longitudinal learning models have been proposed to predict clinical outcomes and/or disease status, which, though, often fail to consider missing temporal phenotypic records of the patients that can convey valuable information of AD progressions. Another challenge in AD studies is how to integrate heterogeneous genotypic and phenotypic biomarkers to improve diagnosis prediction. To cope with these challenges, in this paper we propose a longitudinal multi-modal method to learn enriched genotypic and phenotypic biomarker representations in the format of fixed-length vectors that can simultaneously capture the baseline neuroimaging measurements of the entire dataset and progressive variations of the varied counts of follow-up measurements over time of every participant from different biomarker sources. The learned global and local projections are aligned by a soft constraint and the structured-sparsity norm is used to uncover the multi-modal structure of heterogeneous biomarker measurements. While the proposed objective is clearly motivated to characterize the progressive information of AD developments, it is a nonsmooth objective that is difficult to efficiently optimize in general. Thus, we derive an efficient iterative algorithm, whose convergence is rigorously guaranteed in mathematics. We have conducted extensive experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) data using one genotypic and two phenotypic biomarkers. Empirical results have demonstrated that the learned enriched biomarker representations are more effective in predicting the outcomes of various cognitive assessments. Moreover, our model has successfully identified disease-relevant biomarkers supported by existing medical findings that additionally warrant the correctness of our method from the clinical perspective. 
    more » « less
  5. Abstract

    With the explosive growth of biomarker data in Alzheimer’s disease (AD) clinical trials, numerous mathematical models have been developed to characterize disease-relevant biomarker trajectories over time. While some of these models are purely empiric, others are causal, built upon various hypotheses of AD pathophysiology, a complex and incompletely understood area of research. One of the most challenging problems in computational causal modeling is using a purely data-driven approach to derive the model’s parameters and the mathematical model itself, without any prior hypothesis bias. In this paper, we develop an innovative data-driven modeling approach to build and parameterize a causal model to characterize the trajectories of AD biomarkers. This approach integrates causal model learning, population parameterization, parameter sensitivity analysis, and personalized prediction. By applying this integrated approach to a large multicenter database of AD biomarkers, the Alzheimer’s Disease Neuroimaging Initiative, several causal models for different AD stages are revealed. In addition, personalized models for each subject are calibrated and provide accurate predictions of future cognitive status.

     
    more » « less