skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nickel‐Catalyzed 1,2‐Diarylation of Alkenyl Carboxylates: A Gateway to 1,2,3‐Trifunctionalized Building Blocks
Abstract A nickel‐catalyzed conjunctive cross‐coupling of alkenyl carboxylic acids, aryl iodides, and aryl/alkenyl boronic esters is reported. The reaction delivers the desired 1,2‐diarylated and 1,2‐arylalkenylated products with excellent regiocontrol. To demonstrate the synthetic utility of the method, a representative product is prepared on gram scale and then diversified to eight 1,2,3‐trifunctionalized building blocks using two‐electron and one‐electron logic. Using this method, three routes toward bioactive molecules are improved in terms of yield and/or step count. This method represents the first example of catalytic 1,2‐diarylation of an alkene directed by a native carboxylate group.  more » « less
Award ID(s):
1800280
PAR ID:
10127288
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
3
ISSN:
1433-7851
Page Range / eLocation ID:
p. 1201-1205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rh(I)‐catalyzed C8‐selective C−H alkenylation and arylation of 1,2,3,4‐tetrahydroquinolines with alkenyl and aryl carboxylic acids under microwave assistance have been realized. Using [Rh(CO)2(acac)] as the catalyst and Piv2O as the acid activator, 1,2,3,4‐tetrahydroquinolines undergo C8‐selective decarbonylative C−H alkenylation with a wide range of alkenyl and aryl carboxylic acids, affording the C8‐alkenylated or arylated 1,2,3,4‐tetrahydroquinolines. This method enables the synthesis of C8‐alkenylated 1,2,3,4‐tetrahydroquinolines that would otherwise be difficult to access by means of conventional C−H alkenylation protocols. Moreover, this catalytic system also works well in C8‐selective decarbonylative C−H arylation of 1,2,3,4‐tetrahydroquinolines with aryl carboxylic acids. The catalytic activity strongly depends on the choice of theN‐directing group, with the readily installable and removableN‐(2‐pyrimidyl) group being optimal. The catalytic pathway is elucidated by mechanistic experiments. 
    more » « less
  2. null (Ed.)
    A highly chemoselective iron-catalyzed three-component dicarbofunctionalization of unactivated olefins with alkyl halides (iodides and bromides) and sp 2 -hybridized Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp 2 -hybridized nucleophiles (electron-rich and electron-deficient (hetero)aryl and alkenyl Grignard reagents), alkyl halides (tertiary alkyl iodides/bromides and perfluorinated bromides), and unactivated olefins bearing diverse functional groups including tethered alkenes, ethers, protected alcohols, aldehydes, and amines to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C–C bonds. 
    more » « less
  3. Abstract Palladium(II)‐catalyzed C(alkenyl)−H alkenylation enabled by a transient directing group (TDG) strategy is described. The dual catalytic process takes advantage of reversible condensation between an alkenyl aldehyde substrate and an amino acid TDG to facilitate coordination of the metal catalyst and subsequent C(alkenyl)−H activation by a tailored carboxylate base. The resulting palladacycle then engages an acceptor alkene, furnishing a 1,3‐diene with high regio‐ andE/Z‐selectivity. The reaction enables the synthesis of enantioenriched atropoisomeric 2‐aryl‐substituted 1,3‐dienes, which have seldom been examined in previous literature. Catalytically relevant alkenyl palladacycles were synthesized and characterized by X‐ray crystallography, and the energy profiles of the C(alkenyl)−H activation step and the stereoinduction model were elucidated by density functional theory (DFT) calculations. 
    more » « less
  4. Abstract The first C−SCF3/SeCF3cross‐coupling reactions using gold redox catalysis [(MeDalphos)AuCl], AgSCF3or Me4NSeCF3, and organohalides as substrates are reported. The new methodology enables a one‐stop shop synthesis of aryl/alkenyl/alkynyl trifluoromethylthio‐ and selenoethers with a broad substrate scope (>60 examples with up to 97 % isolated yield). The method is scalable, and its robustness is evidenced by the late‐stage functionalization of various bioactive molecules, which makes this reaction an attractive alternative in the synthesis of trifluoromethylthio‐ and selenoethers for pharmaceutical and agrochemical research and development. 
    more » « less
  5. Abstract Regioselective hydrofunctionalization of alkynes represents a straightforward route to access alkenyl boronate and silane building blocks. In previously reported catalytic systems, high selectivity is achieved with a limited scope of substrates and/or reagents, with general solutions lacking. Herein, we describe a selective copper‐catalyzed Markovnikov hydrofunctionalization of terminal alkynes that is facilitated by strongly donating cyclic (alkyl)(amino)carbene (CAAC) ligands. Using this method, both alkyl‐ and aryl‐substituted alkynes are coupled with a variety of boryl and silyl reagents with high α‐selectivity. The reaction is scalable, and the products are versatile intermediates that can participate in various downstream transformations. Preliminary mechanistic experiments shed light on the role of CAAC ligands in this process. 
    more » « less