skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Library of Atomically Thin 2D Materials Featuring the Conductive‐Point Resistive Switching Phenomenon
Abstract Non‐volatile resistive switching (NVRS) is a widely available effect in transitional metal oxides, colloquially known as memristors, and of broad interest for memory technology and neuromorphic computing. Until recently, NVRS was not known in other transitional metal dichalcogenides (TMDs), an important material class owing to their atomic thinness enabling the ultimate dimensional scaling. Here, various monolayer or few‐layer 2D materials are presented in the conventional vertical structure that exhibit NVRS, including TMDs (MX2, M=transitional metal, e.g., Mo, W, Re, Sn, or Pt; X=chalcogen, e.g., S, Se, or Te), TMD heterostructure (WS2/MoS2), and an atomically thin insulator (h‐BN). These results indicate the universality of the phenomenon in 2D non‐conductive materials, and feature low switching voltage, large ON/OFF ratio, and forming‐free characteristic. A dissociation–diffusion–adsorption model is proposed, attributing the enhanced conductance to metal atoms/ions adsorption into intrinsic vacancies, a conductive‐point mechanism supported by first‐principle calculations and scanning tunneling microscopy characterizations. The results motivate further research in the understanding and applications of defects in 2D materials.  more » « less
Award ID(s):
1809017
PAR ID:
10452600
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
7
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 2D materials have attracted much interest over the past decade in nanoelectronics. However, it was believed that the atomically thin layered materials are not able to show memristive effect in vertically stacked structure, until the recent discovery of monolayer transition metal dichalcogenide (TMD) atomristors, overcoming the scaling limit to sub‐nanometer. Herein, the nonvolatile resistance switching (NVRS) phenomenon in monolayer hexagonal boron nitride (h‐BN), a typical 2D insulator, is reported. The h‐BN atomristors are studied using different electrodes and structures, featuring forming‐free switching in both unipolar and bipolar operations, with large on/off ratio (up to 107). Moreover, fast switching speed (<15 ns) is demonstrated via pulse operation. Compared with monolayer TMDs, the one‐atom‐thin h‐BN sheet reduces the vertical scaling to ≈0.33 nm, representing a record thickness for memory materials. Simulation results based on ab‐initio method reveal that substitution of metal ions into h‐BN vacancies during electrical switching is a likely mechanism. The existence of NVRS in monolayer h‐BN indicates fruitful interactions between defects, metal ions and interfaces, and can advance emerging applications on ultrathin flexible memory, printed electronics, neuromorphic computing, and radio frequency switches. 
    more » « less
  2. Abstract 2D materials have been of considerable interest as new materials for device applications. Non‐volatile resistive switching applications of MoS2and WS2have been previously demonstrated; however, these applications are dramatically limited by high temperatures and extended times needed for the large‐area synthesis of 2D materials on crystalline substrates. The experimental results demonstrate a one‐step sulfurization method to synthesize MoS2and WS2at 550 °C in 15 min on sapphire wafers. Furthermore, a large area transfer of the synthesized thin films to SiO2/Si substrates is achieved. Following this, MoS2and WS2memristors are fabricated that exhibit stable non‐volatile switching and a satisfactory large on/off current ratio (103–105) with good uniformity. Tuning the sulfurization parameters (temperature and metal precursor thickness) is found to be a straightforward and effective strategy to improve the performance of the memristors. The demonstration of large‐scale MoS2and WS2memristors with a one‐step low‐temperature sulfurization method with simple strategy to tuning can lead to potential applications such as flexible memory and neuromorphic computing. 
    more » « less
  3. Abstract The ability to modulate optical and electrical properties of two-dimensional (2D) semiconductors has sparked considerable interest in transition metal dichalcogenides (TMDs). Herein, we introduce a facile strategy for modulating optoelectronic properties of monolayer MoSe2with external light. Photochromic diarylethene (DAE) molecules formed a 2-nm-thick uniform layer on MoSe2, switching between its closed- and open-form isomers under UV and visible irradiation, respectively. We have discovered that the closed DAE conformation under UV has its lowest unoccupied molecular orbital energy level lower than the conduction band minimum of MoSe2, which facilitates photoinduced charge separation at the hybrid interface and quenches photoluminescence (PL) from monolayer flakes. In contrast, open isomers under visible light prevent photoexcited electron transfer from MoSe2to DAE, thus retaining PL emission properties. Alternating UV and visible light repeatedly show a dynamic modulation of optoelectronic signatures of MoSe2. Conductive atomic force microscopy and Kelvin probe force microscopy also reveal an increase in conductivity and work function of MoSe2/DAE with photoswitched closed-form DAE. These results may open new opportunities for designing new phototransistors and other 2D optoelectronic devices. 
    more » « less
  4. Abstract 2D transition metal dichalcogenide (TMD) layered materials are promising for future electronic and optoelectronic applications. The realization of large‐area electronics and circuits strongly relies on wafer‐scale, selective growth of quality 2D TMDs. Here, a scalable method, namely, metal‐guided selective growth (MGSG), is reported. The success of control over the transition‐metal‐precursor vapor pressure, the first concurrent growth of two dissimilar monolayer TMDs, is demonstrated in conjunction with lateral or vertical TMD heterojunctions at precisely desired locations over the entire wafer in a single chemical vapor deposition (VCD) process. Owing to the location selectivity, MGSG allows the growth of p‐ and n‐type TMDs with spatial homogeneity and uniform electrical performance for circuit applications. As a demonstration, the first bottom‐up complementary metal‐oxide‐semiconductor inverter based on p‐type WSe2and n‐type MoSe2is achieved, which exhibits a high and reproducible voltage gain of 23 with little dependence on position. 
    more » « less
  5. Abstract Atomically thin, 2D, and semiconducting transition metal dichalcogenides (TMDs) are seen as potential candidates for complementary metal oxide semiconductor (CMOS) technology in future nodes. While high‐performance field effect transistors (FETs), logic gates, and integrated circuits (ICs) made from n‐type TMDs such as MoS2and WS2grown at wafer scale have been demonstrated, realizing CMOS electronics necessitates integration of large area p‐type semiconductors. Furthermore, the physical separation of memory and logic is a bottleneck of the existing CMOS technology and must be overcome to reduce the energy burden for computation. In this article, the existing limitations are overcome and for the first time, a heterogeneous integration of large area grown n‐type MoS2and p‐type vanadium doped WSe2FETs with non‐volatile and analog memory storage capabilities to achieve a non–von Neumann 2D CMOS platform is introduced. This manufacturing process flow allows for precise positioning of n‐type and p‐type FETs, which is critical for any IC development. Inverters and a simplified 2‐input‐1‐output multiplexers and neuromorphic computing primitives such as Gaussian, sigmoid, and tanh activation functions using this non–von Neumann 2D CMOS platform are also demonstrated. This demonstration shows the feasibility of heterogeneous integration of wafer scale 2D materials. 
    more » « less