skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In vivo imaging of cervical precancer using a low-cost and easy-to-use confocal microendoscope
Cervical cancer incidence and mortality rates remain high in medically underserved areas. In this study, we present a low-cost (<$5,000), portable and user-friendly confocal microendoscope, and we report on its clinical use to image precancerous lesions in the cervix. The confocal microendoscope employs digital apertures on a digital light projector and a CMOS sensor to implement line-scanning confocal imaging. Leveraging its versatile programmability, we describe an automated aperture alignment algorithm to ensure clinical ease-of-use and to facilitate technology dissemination in low-resource settings. Imaging performance is then evaluated inex vivoandin vivopilot studies; results demonstrate that the confocal microendoscope can enhance visualization of nuclear morphology, contributing to significantly improved recognition of clinically important features for detection of cervical precancer.  more » « less
Award ID(s):
1730574
PAR ID:
10127540
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Biomedical Optics Express
Volume:
11
Issue:
1
ISSN:
2156-7085
Format(s):
Medium: X Size: Article No. 269
Size(s):
Article No. 269
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hyperpolarized magnetic resonance imaging (HP‐MRI) has emerged as a powerful tool in molecular imaging, providingin vivo, real‐time insights into metabolic pathways without ionizing radiation. Signal Amplification by Reversible Exchange (SABRE) represents a promising hyperpolarization technique, leveraging parahydrogen to enhance MRI signals. In this concept, we delineate the evolution of SABRE and landmark papers that have enabled us recently to produce biocompatible and low‐cost hyperpolarized pyruvate within minutes forin vivometabolic imaging, showcasing SABRE′s potential for preclinical and near‐future clinical settings. Looking ahead, with ongoing efforts focused on optimizing polarizer technology and expanding applications beyond pyruvate, we envision SABRE as a key player in the research and application of HP‐MRI due to its simplicity and throughput. 
    more » « less
  2. Imaging of surface-enhanced Raman scattering (SERS) nanoparticles (NPs) has been intensively studied for cancer detection due to its high sensitivity, unconstrained low signal-to-noise ratios, and multiplexing detection capability. Furthermore, conjugating SERS NPs with various biomarkers is straightforward, resulting in numerous successful studies on cancer detection and diagnosis. However, Raman spectroscopy only provides spectral data from an imaging area without co-registered anatomic context. This is not practical and suitable for clinical applications. Here, we propose a custom-made Raman spectrometer with computer-vision-based positional tracking and monocular depth estimation using deep learning (DL) for the visualization of 2D and 3D SERS NPs imaging, respectively. In addition, the SERS NPs used in this study (hyaluronic acid-conjugated SERS NPs) showed clear tumor targeting capabilities (target CD44 typically overexpressed in tumors) by anex vivoexperiment and immunohistochemistry. The combination of Raman spectroscopy, image processing, and SERS molecular imaging, therefore, offers a robust and feasible potential for clinical applications. 
    more » « less
  3. Optical coherence microscopy (OCM) uses interferometric detection to capture the complex optical field with high sensitivity, which enables computational wavefront retrieval using back-scattered light from the sample. Compared to a conventional wavefront sensor, aberration sensing with OCM via computational adaptive optics (CAO) leverages coherence and confocal gating to obtain signals from the focus with less cross-talk from other depths or transverse locations within the field-of-view. Here, we present an investigation of the performance of CAO-based aberration sensing in simulation, bead phantoms, andex vivomouse brain tissue. We demonstrate that, due to the influence of the double-pass confocal OCM imaging geometry on the shape of computed pupil functions, computational sensing of high-order aberrations can suffer from signal attenuation in certain spatial-frequency bands and shape similarity with lower order counterparts. However, by sensing and correcting only low-order aberrations (astigmatism, coma, and trefoil), we still successfully corrected tissue-induced aberrations, leading to 3× increase in OCM signal intensity at a depth of ∼0.9 mm in a freshly dissectedex vivomouse brain. 
    more » « less
  4. In this Letter a novel, to our knowledge, approach for near-infrared (NIR) fluorescence portable confocal microscopy is introduced, aiming to enhance fluorescence imaging of biological samples in the NIR-II window. By integrating a superconducting nanowire single-photon detector (SNSPD) into a confocal microscopy, we have significantly leveraged the detection efficiency of the NIR-II fluorescence signal from indocyanine green (ICG), an FDA-approved dye known for its NIR-II fluorescence capabilities. The SNSPD, characterized by its extremely low dark count rate and optimized NIR system detection efficiency, enables the excitation of ICG with 1 mW and the capture of low-light fluorescence signals from deep regions (up to 512 µm). Consequently, our technique was able to produce high-resolution images of bio samples with a superior signal-to-noise ratio, making a substantial advancement in the field of fluorescence microscopy and offering a promising opportunity for future clinical study. 
    more » « less
  5. The electrostatic MEMS scanner plays an important role in the miniaturization of the microscopic imaging system. We have developed a new two-dimensional (2D) parametrically-resonant MEMS scanner with patterned Au coating (>90% reflectivity at an NIR 785-nm wavelength), for a near-infrared (NIR) fluorescence intraoperative confocal microscopic imaging system with a compact form factor. A silicon-on-insulator (SOI)-wafer based dicing-free microfabrication process has been developed for mass-production with high yield. Based on an in-plane comb-drive configuration, the resonant MEMS scanner performs 2D Lissajous pattern scanning with a large mechanical scanning angle (MSA, ±4°) on each axis at low driving voltage (36 V). A large field-of-view (FOV) has been achieved by using a post-objective scanning architecture of the confocal microscope. We have integrated the new MEMS scanner into a custom-made NIR fluorescence intraoperative confocal microscope with an outer diameter of 5.5 mm at its distal-end. Axial scanning has been achieved by using a piezoelectric actuator-based driving mechanism. We have successfully demonstrated ex vivo 2D imaging on human tissue specimens with up to five frames/s. The 2D resonant MEMS scanner can potentially be utilized for many applications, including multiphoton microendoscopy and wide-field endoscopy. 
    more » « less