skip to main content


Title: A xenon collisional-radiative model applicable to electric propulsion devices: I. Calculations of electron-impact cross sections for xenon ions by the Dirac B-spline R-matrix method
Award ID(s):
1834740 1803844
NSF-PAR ID:
10127656
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Plasma Sources Science and Technology
Volume:
28
Issue:
10
ISSN:
1361-6595
Page Range / eLocation ID:
105004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The ionization fraction is a key figure of merit for optimizing the performance of plasma device. This work presents an optical emission spectroscopy (OES) method to determine the ionization fraction in low-temperature xenon plasma. The emission line-ratio of xenon ionic and atomic 6p–6stransitions is used in this method. A comprehensive collisional-radiative model developed in our previous work is employed to describe the relationship between the line-ratios and the plasma parameters. It is found that some special line-ratios have a sensitive relationship to the ionization fraction, e.g. the ratio of the 460.30 nm line and 828.01 nm lines. These line-ratios are selected for the diagnostic method. The method is demonstrated in a magnetized discharge chamber. The axially-resolved emission spectra of the ionization chamber are measured, and from those the ionization fraction along the chamber axis is determined via the OES method. The axially-resolved ionization fraction is found to be dependent on the magnetic field and agrees well with those obtained from a Langmuir probe. In the experiment, the probe is overheated under some conditions, possibly due to the bombardment by energetic particles. In this case, no results can be obtained from the probe, while the OES method can still obtain reasonable results. Combined with optical tomography and spectral imaging technology, the OES method can also provide the spatial distribution of the ionization fraction, which is needed for revealing the discharge mechanisms of plasma devices.

     
    more » « less
  2. null (Ed.)
    A bstract We present a particle physics model to explain the observed enhancement in the Xenon-1T data at an electron recoil energy of 2.5 keV. The model is based on a U(1) extension of the Standard Model where the dark sector consists of two essentially mass degenerate Dirac fermions in the sub-GeV region with a small mass splitting interacting with a dark photon. The dark photon is unstable and decays before the big bang nucleosynthesis, which leads to the dark matter constituted of two essentially mass degenerate Dirac fermions. The Xenon-1T excess is computed via the inelastic exothermic scattering of the heavier dark fermion from a bound electron in xenon to the lighter dark fermion producing the observed excess events in the recoil electron energy. The model can be tested with further data from Xenon-1T and in future experiments such as SuperCDMS. 
    more » « less