skip to main content

Search for: All records

Award ID contains: 1834740

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since its initial development in the 1970s by Phil Burke and his collaborators, the R-matrix theory and associated computer codes have become the method of choice for the calculation of accurate data for general electron–atom/ion/molecule collision and photoionization processes. The use of a non-orthogonal set of orbitals based on B-splines, now called the B-spline R-matrix (BSR) approach, was pioneered by Zatsarinny. It has considerably extended the flexibility of the approach and improved particularly the treatment of complex many-electron atomic and ionic targets, for which accurate data are needed in many modelling applications for processes involving low-temperature plasmas. Both the originalmore »R-matrix approach and the BSR method have been extended to the interaction of short, intense electromagnetic (EM) radiation with atoms and molecules. Here, we provide an overview of the theoretical tools that were required to facilitate the extension of the theory to the time domain. As an example of a practical application, we show results for two-photon ionization of argon by intense short-pulse extreme ultraviolet radiation.« less
    Free, publicly-accessible full text available March 1, 2023
  2. We reinvestigate a key process in electron-atom collision physics, the elastic scattering of electrons from helium atoms. Specifically, results from a special-purpose relativistic polarized-orbital method, which is designed to treat elastic scattering only, are compared with those from a very extensive, fully ab initio, general-purpose B-spline R-matrix (close-coupling) code.
    Free, publicly-accessible full text available December 1, 2022
  3. The Dirac B-spline R-matrix (DBSR) method is employed to treat low-energy electron collisions with thallium atoms. Special emphasis is placed on spin polarization phenomena that are investigated through calculations of the differential cross-section and the spin asymmetry function. Overall, good agreement between the present calculations and the available experimental measurements is found. The contributions of electron exchange to the spin asymmetry cannot be ignored at low impact energies, while the spin–orbit interaction plays an increasingly significant role as the impact energy rises.
    Free, publicly-accessible full text available December 1, 2022
  4. Cross sections for electron scattering from atomic and molecular iodine are calculated based on the R-matrix (close-coupling) method. Elastic and electronic excitation cross sections are presented for both I and I2. The dissociative electron attachment and vibrational excitation cross sections of the iodine molecule are obtained using the local complex potential approximation. Ionization cross sections are also computed for I2 using the BEB model.
    Free, publicly-accessible full text available December 1, 2022
  5. We have applied the full-relativistic Dirac B-Spline R-matrix method to obtain cross sections for electron scattering from ytterbium atoms. The results are compared with those obtained from a semi-relativistic (Breit-Pauli) model-potential approach and the few available experimental data.
    Free, publicly-accessible full text available September 1, 2022
  6. Benchmark intensity ratio measurements of the energy loss lines of krypton for excitation of the 4p61S0→4p55s[3/2]2, 4p55s[3/2]1, 4p55s′[1/2]0, and 4p55s′[1/2]1 transitions are reported, these being the lowest electronic excitations for krypton. The importance of these ratios as stringent tests of theoretical electron scattering models for the noble gases is discussed, as well as the role of spin-exchange and direct processes regarding the angular dependence of these ratios. The experimental data are compared with predictions from fully-relativistic B-spline R-matrix (close-coupling) calculations.
    Free, publicly-accessible full text available September 1, 2022