skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flash Flood–Producing Storm Properties in a Small Urban Watershed
The structure and evolution of flash flood–producing storms over a small urban watershed in the mid-Atlantic United States with a prototypical flash flood response is examined. Lagrangian storm properties are investigated through analyses of the 32 storms that produced the largest peak discharges in Moores Run between January 2000 and May 2014. The Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) algorithm is used to track storm characteristics over their life cycle with a focus on storm size, movement, intensity, and location. First, the 13 June 2003 and 1 June 2006 storms, which produced the two largest peak discharges for the study period, are analyzed. Heavy rainfall for the 13 June 2003 and 1 June 2006 storms were caused by a collapsing thunderstorm cell and a slow-moving, low-echo centroid storm. Analyses of the 32 storms show that collapsing storm cells play an important role in peak rainfall rate production and flash flooding. Storm motion is predominantly southwest-to-northeast, and approximately half of the storms exhibited some linear organization. Mean storm total rainfall for the 32 storms displayed an asymmetric distribution around Moores Run, with sharply decreasing gradients southwest of the watershed (upwind and into the city) and increased rainfall to the northeast (downwind and away from the city). Results indicate urban modification of rainfall in flash flood–producing storms. There was no evidence that the storms split around Baltimore. Flood-producing rainfall was highly concentrated in time; on average, approximately 21% of the storm total rainfall fell within 15 min.  more » « less
Award ID(s):
1522492
PAR ID:
10127679
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
17
Issue:
10
ISSN:
1525-755X
Page Range / eLocation ID:
2631 to 2647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Flash flooding in the arid/semiarid southwestern United States is frequently associated with convective rainfall during the North American monsoon. In this study, we examine flood-producing storms in central Arizona based on analyses of dense rain gauge observations and stream gauging records as well as North American Regional Reanalysis fields. Our storm catalog consists of 102 storm events during the period of 1988–2014. Synoptic conditions for flood-producing storms are characterized based on principal component analyses. Four dominant synoptic modes are identified, with the first two modes explaining approximately 50% of the variance of the 500-hPa geopotential height. The transitional synoptic pattern from the North American monsoon regime to midlatitude systems is a critical large-scale feature for extreme rainfall and flooding in central Arizona. Contrasting spatial rainfall organizations and storm environment under the four synoptic modes highlights the role of interactions among synoptic conditions, mesoscale processes, and complex terrains in determining space–time variability of convective activities and flash flood hazards in central Arizona. We characterize structure and evolution properties of flood-producing storms based on storm tracking algorithms and 3D radar reflectivity. Fast-moving storm elements can be important ingredients for flash floods in the arid/semiarid southwestern United States. Contrasting storm properties for cloudburst storms highlight the wide spectrum of convective intensities for extreme rain rates in the arid/semiarid southwestern United States and exhibit comparable vertical structures to their counterparts in the eastern United States. 
    more » « less
  2. Abstract Urban development, topographic relief, and coastal boundaries can all exert influences on storm hydroclimatology, making rainfall and flood frequency analysis a major challenge. This study explores heterogeneity in extreme rainfall in the Baltimore Metropolitan region at small spatial scales using hydrometeorological analyses of major storm events in combination with hydroclimatological analyses based onstorm catalogsdeveloped using a 16‐year record of high‐resolution bias‐corrected radar rainfall fields. Our analyses demonstrate the potential for rainfall frequency methods using storm catalogs combined with stochastic storm transposition (SST); procedures are implemented for Dead Run, a small (14.3 km2) urban watershed located within the Baltimore Metropolitan area. The results point to the pronounced impact of complex terrain (including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in the region) on the regional rainfall climatology. Warm‐season thunderstorm systems are shown to be the dominant mechanism for generating extreme, short‐duration rainfall that leads to flash flooding. The SST approach is extended through the implementation of amultiplier fieldthat accounts for spatial heterogeneities in extreme rainfall magnitude. SST‐based analyses demonstrate the need to consider rainfall heterogeneity at multiple scales when estimating the rainfall intensity‐duration‐frequency relationships. 
    more » « less
  3. Abstract The 14 September 2015 Hildale, Utah, storm resulted in 20 flash flood fatalities, making it the most deadly natural disaster in Utah history; it is the quintessential example of the “paroxysmal precipitation of the desert”. The measured peak discharge from Maxwell Canyon at a drainage area of 5.3 km2was 266 m3/s, a value that exceeds envelope curve peaks for Utah. The 14 September 2015 flash flood reflects features common to other major flash flood events in the region, as well as unique features. The flood was produced by a hailstorm that was moving rapidly from southwest to northeast and intensified as it interacted with complex terrain. Polarimetric radar observations show that the storm exhibited striking temporal variability, with the Maxwell Canyon tributary of Short Creek and a small portion of the East Fork Virgin River basin experiencing extreme precipitation. Periods of extreme rainfall rates for the 14 September 2015 storm are characterized byKDPsignatures of extreme rainfall in polarimetric radar measurements. SimilarKDPsignatures characterized multiple storms that have produced record and near‐record flood peaks in Colorado Plateau watersheds. The climatology of monsoon thunderstorms that produce flash floods exhibits striking spatial heterogeneities in storm occurrence and motion. The hydroclimatology of flash flooding in arid/semiarid watersheds of the southwestern United States exhibits relatively weak dependence on drainage basin area. Large flood peaks over a broad range of basin scales can be produced by small thunderstorms like the 14 September 2015 Hildale Storm, which pass close to the outlet. 
    more » « less
  4. Abstract. The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability. 
    more » « less
  5. Abstract Estimating the probabilities of rare floods in mountainous watersheds is challenging due to the hydrometeorological complexity of seasonally varying snowmelt and soil moisture dynamics, as well as spatiotemporal variability in extreme precipitation. Design storm methods and statistical flood frequency analyses often overlook these complexities and how they shape the probabilities of rare floods. This study presents a process‐based approach that combines gridded precipitation, stochastic storm transposition (SST), and physics‐based distributed rainfall‐runoff modeling to simulate flood peak and volume distributions up to the 10,000‐year recurrence interval and to provide insights into the hydrometeorological drivers of those events. The approach is applied to a small mountainous watershed in the Colorado Front Range in the United States. We show that storm transposition in the Front Range can be justified under existing definitions of regional precipitation homogeneity. The process‐based results show close agreement with a statistically based mixture distribution that considers underlying flood drivers. We further demonstrate that antecedent conditions and snowmelt drive frequent peak discharges and rarer flood volumes, while the upper tail of the flood peak distribution appears to be controlled by heavy rainfall and rain‐on‐snow. In particular, we highlight the important role of early fall extreme rainfall in controlling rare flood peaks (but not volumes), despite only one such event having been observed in recent decades. Notwithstanding issues related to the accuracy of gridded precipitation datasets, these findings highlight the potential of SST and process‐based modeling to help understand the relationships between flood drivers and flood frequencies. 
    more » « less