skip to main content


Title: The role of storm scale, position and movement in controlling urban flood response
Abstract. The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.  more » « less
Award ID(s):
1522492
NSF-PAR ID:
10127942
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
22
Issue:
1
ISSN:
1607-7938
Page Range / eLocation ID:
417 to 436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Green infrastructure (GI) practices improve stormwater quality and reduce urban flooding, but as urban hydrology is highly controlled by its associated gray infrastructure (e.g., stormwater pipe network), GI's watershed‐scale performance depends on its siting within its associated watershed. Although many stormwater practitioners have begun considering GI's spatial configuration within a larger watershed, few approaches allow for flexible scenario exploration, which can untangle GI's interaction with gray infrastructure network and assess its effects on watershed hydrology. To address the gap in integrated gray‐green infrastructure planning, we used an exploratory model to examine gray‐green infrastructure performance using synthetic stormwater networks with varying degrees of flow path meandering, informed by analysis on stormwater networks from the Minneapolis‐St. Paul Metropolitan Area, MN, USA. Superimposed with different coverage and placements of GI (e.g., bioretention cells), these gray‐green stormwater networks are then subjected to different rainfall intensities within Environmental Protection Agency's Storm Water Management Model to simulate their hydrological benefits (e.g., peak flow reduction, flood reduction). Although only limited choices of green and gray infrastructure were explored, the results show that the gray infrastructure's spatial configuration can introduce tradeoffs between increased peak flow and increased flooding, and further interacts with GI coverage and placement to reduce peak flow and flooding at low rainfall intensity. However, as rainfall intensifies, GI ceases to reduce peak flow. For integrated gray‐green infrastructure planning, our results suggest that physical constraints of the stormwater networks and the range of rainfall intensities must be considered when implementing GI.

     
    more » « less
  2. Abstract

    The interleaving of impermeable and permeable surfaces along a runoff flow path controls the hillslope hydrograph, the spatial pattern of infiltration, and the distribution of flow velocities in landscapes dominated by overland flow. Predictions of the relationship between the pattern of (im)permeable surfaces and hydrological outcomes tend to fall into two categories: (i) generalized metrics of landscape pattern, often referred to as connectivity metrics, and (ii) direct simulation of specific hillslopes. Unfortunately, the success of using connectivity metrics for prediction is mixed, while direct simulation approaches are computationally expensive and hard to generalize. Here we present a new approach for prediction based on emulation of a coupled Saint Venant equation‐Richards equation model with random forest regression. The emulation model predicts infiltration and peak flow velocities for every location on a hillslope with an arbitrary spatial pattern of impermeable and permeable surfaces but fixed soil, slope, and storm properties. It provides excellent fidelity to the physically based model predictions and is generalizable to novel spatial patterns. The spatial pattern features that explain most of the hydrological variability are not stable across different soils, slopes, and storms, potentially explaining some of the difficulties associated with direct use of spatial metrics for predicting landscape function. Although the current emulator relies on strong assumptions, including smooth topography, binary permeability fields, and only a small collection of soils, slope, and storm scenarios, it offers a promising way forward for applications in dryland and urban settings and in supporting the development of potential connectivity indices.

     
    more » « less
  3. Abstract

    Although prior studies have evaluated the role of sampling errors associated with local and regional methods to estimate peak flow quantiles, the investigation of epistemic errors is more difficult because the underlying properties of the random variable have been prescribed using ad‐hoc characterizations of the regional distributions of peak flows. This study addresses this challenge using representations of regional peak flow distributions derived from a combined framework of stochastic storm transposition, radar rainfall observations, and distributed hydrologic modeling. The authors evaluated four commonly used peak flow quantile estimation methods using synthetic peak flows at 5,000 sites in the Turkey River watershed in Iowa, USA. They first used at‐site flood frequency analysis using the Pearson Type III distribution with L‐moments. The authors then pooled regional information using (1) the index flood method, (2) the quantile regression technique, and (3) the parameter regression. This approach allowed quantification of error components stemming from epistemic assumptions, parameter estimation method, sample size, and, in the regional approaches, the number ofpooledsites. The results demonstrate that the inability to capture the spatial variability of the skewness of the peak flows dominates epistemic error for regional methods. We concluded that, in the study basin, this variability could be partially explained by river network structure and the predominant orientation of the watershed. The general approach used in this study is promising in that it brings new tools and sources of data to the study of the old hydrologic problem of flood frequency analysis.

     
    more » « less
  4. null (Ed.)
    Quantifying and characterizing groundwater flow and discharge from barrier islands to coastal waters is crucial for assessing freshwater resources and contaminant transport to the ocean. In this study, we examined the groundwater hydrological response, discharge, and associated nutrient fluxes in Dauphin Island, a barrier island located in the northeastern Gulf of Mexico. We employed radon ( 222 Rn) and radium (Ra) isotopes as tracers to evaluate the temporal and spatial variability of fresh and recirculated submarine groundwater discharge (SGD) in the nearshore waters. The results from a 40-day continuous 222 Rn time series conducted during a rainy season suggest that the coastal area surrounding Dauphin Island was river-dominated in the days after storm events. Groundwater response was detected about 1 week after the precipitation and peak river discharge. During the period when SGD was a factor in the nutrient budget of the coastal area, the total SGD rates were as high as 1.36 m day –1 , or almost three times higher than detected fluxes during the river-dominated period. We found from a three-endmember Ra mixing model that most of the SGD from the barrier island was composed of fresh groundwater. SGD was driven by marine and terrestrial forces, and focused on the southeastern part of the island. We observed spatial variability of nutrients in the subterranean estuary across this part of the island. Reduced nitrogen (i.e., NH 4 + and dissolved organic nitrogen) fluxes dominated the eastern shore with average rates of 4.88 and 5.20 mmol m –2 day –1 , respectively. In contrast, NO 3 – was prevalent along the south-central shore, which has significant tourism developments. The contrasting nutrient dynamics resulted in N- and P-limited coastal water in the different parts of the island. This study emphasizes the importance of understanding groundwater flow and dynamics in barrier islands, particularly those urbanized, prone to storm events, or located near large estuaries. 
    more » « less
  5. Abstract

    Soil moisture is a key control on runoff generation and biogeochemical processes on hillslopes. Precipitation events can evoke different soil moisture responses with depth through the soil profile, and responses can differ among landscape positions along a hillslope. We sought to elucidate the nature of these responses by estimating changes in water content, response time between peak precipitation and peak soil moisture, and wetting front velocities for 43 storms at 45 locations on three adjacent hillslopes within a headwater catchment of the southern Appalachian Mountains (NC, USA). We used a multivariate modeling approach to quantify the relative influences and the predictability of soil moisture responses by a combination of landscape and storm characteristics. We quantified the lag correlations between hillslope mean soil moisture and catchment runoff to demonstrate how storm properties and hillslope‐scale characteristics may influence runoff at the catchment outlet. Soil moisture responses varied widely, and no consistent patterns were observed among response metrics laterally or vertically along hillslopes. In contrast to other studies, we found that the relative influence of hillslope properties and storm characteristics varied with soil moisture responses and during storms. Antecedent conditions and storm depths influenced the strength of lag correlations between soil moisture and runoff, whereas storm mean intensity was correlated with the lag times. These results highlight the utility of intensive observations for characterizing heterogeneity in soil moisture responses, suggesting, among other things, a need for better representation of the subsurface processes in rainfall‐runoff models. Identifying the relative importance of drivers can be beneficial in building parsimonious hydrological models.

     
    more » « less