Abstract. The continued warming of the Arctic could release vast stores of carbon into the atmosphere from high-latitude ecosystems, especially from thawingpermafrost. Increasing uptake of carbon dioxide (CO2) by vegetation during longer growing seasons may partially offset such release of carbon. However, evidence of significant net annual release of carbon from site-level observations and model simulations across tundra ecosystems has been inconclusive. To address this knowledge gap, we combined top-down observations of atmospheric CO2 concentration enhancements from aircraft and a tall tower, which integrate ecosystem exchange over large regions, with bottom-up observed CO2 fluxes from tundraenvironments and found that the Alaska North Slope is not a consistent net source nor net sink of CO2 to the atmosphere (ranging from −6 to+6 Tg C yr−1 for 2012–2017). Our analysis suggests that significant biogenic CO2 fluxes from unfrozen terrestrial soils, and likely inland waters, during the early cold season (September–December) are major factors in determining the net annual carbon balance of the North Slope, implying strong sensitivity to the rapidly warming freeze-up period. At the regional level, we find no evidence of the previously reported large late-cold-season (January–April) CO2 emissions to the atmosphere during the study period. Despite the importance of the cold-season CO2 emissions to the annual total, the interannual variability in the net CO2 flux is driven by the variability in growing season fluxes. During the growing season, the regional net CO2 flux is also highly sensitive to the distribution of tundra vegetation types throughout the North Slope. This study shows that quantification and characterization of year-round CO2 fluxes from the heterogeneous terrestrial and aquatic ecosystems in the Arctic using both site-level and atmospheric observations are important to accurately project the Earth system response to future warming.
more »
« less
Atmospheric measurements of the terrestrial O 2 : CO 2 exchange ratio of a midlatitude forest
Abstract. Measurements of atmospheric O2have been used to quantify large-scalefluxes of carbon between the oceans, atmosphere and landsince 1992 (Keeling and Shertz, 1992). With time,datasets have grownand estimates of fluxes have become more precise, buta key uncertainty in these calculations is the exchange ratioof O2and CO2 associated with the net land carbon sink(αB). We present measurements of atmosphericO2 and CO2 collected overa 6-year period from a mixed deciduous forest in centralMassachusetts, USA (42.537∘ N, 72.171∘ W).Using a differential fuel-cell-basedinstrument for O2 and a nondispersive infrared analyzer forCO2, we analyzed airstreams collected within and ∼5 m above the forest canopy. Averaged over the entireperiod of record, we find these two species covary with a slope of -1.081±0.007 mol of O2 per mole ofCO2 (themean and standard error of 6 h periods).If we limit the data to values collected on summer days within thecanopy, the slope is -1.03±0.01. These are the conditions in whichbiotic influences are most likely to dominate.This result is significantlydifferent from the value of −1.1 widely used in O2-basedcalculations of the global carbon budget, suggesting the need for a deeper understanding of the exchange ratios of the various fluxes and pools comprising the net sink.
more »
« less
- Award ID(s):
- 1832210
- PAR ID:
- 10127757
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 19
- Issue:
- 13
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 8687 to 8701
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic–boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic–boreal CO2 fluxes (ABCflux) that aggregates in situ measurements of terrestrial net ecosystem CO2 exchange and its derived partitioned component fluxes: gross primary productivity and ecosystem respiration. The data span from 1989 to 2020 with over 70 supporting variables that describe key site conditions (e.g., vegetation and disturbance type), micrometeorological and environmental measurements (e.g., air and soil temperatures), and flux measurement techniques. Here, we describe these variables, the spatial and temporal distribution of observations, the main strengths and limitations of the database, and the potential research opportunities it enables. In total, ABCflux includes 244 sites and 6309 monthly observations; 136 sites and 2217 monthly observations represent tundra, and 108 sites and 4092 observations represent the boreal biome. The database includes fluxes estimated with chamber (19 % of the monthly observations), snow diffusion (3 %) and eddy covariance (78 %) techniques. The largest number of observations were collected during the climatological summer (June–August; 32 %), and fewer observations were available for autumn (September–October; 25 %), winter (December–February; 18 %), and spring (March–May; 25 %). ABCflux can be used in a wide array of empirical, remote sensing and modeling studies to improve understanding of the regional and temporal variability in CO2 fluxes and to better estimate the terrestrial ABZ CO2 budget. ABCflux is openly and freely available online (Virkkala et al., 2021b, https://doi.org/10.3334/ORNLDAAC/1934).more » « less
-
Abstract. Landscapes are often assumed to be homogeneous when interpreting eddy covariance fluxes, which can lead to biases when gap-filling and scaling up observations to determine regional carbon budgets. Tundra ecosystems are heterogeneous at multiple scales. Plant functional types, soil moisture, thaw depth, and microtopography, for example, vary across the landscape and influence net ecosystem exchange (NEE) of carbon dioxide (CO2) and methane (CH4) fluxes. With warming temperatures, Arctic ecosystems are changing from a net sink to a net source of carbon to the atmosphere in some locations, but the Arctic's carbon balance remains highly uncertain. In this study we report results from growing season NEE and CH4 fluxes from an eddy covariance tower in the Yukon–Kuskokwim Delta in Alaska. We used footprint models and Bayesian Markov chain Monte Carlo (MCMC) methods to unmix eddy covariance observations into constituent land-cover fluxes based on high-resolution land-cover maps of the region. We compared three types of footprint models and used two land-cover maps with varying complexity to determine the effects of these choices on derived ecosystem fluxes. We used artificially created gaps of withheld observations to compare gap-filling performance using our derived land-cover-specific fluxes and traditional gap-filling methods that assume homogeneous landscapes. We also compared resulting regional carbon budgets when scaling up observations using heterogeneous and homogeneous approaches. Traditional gap-filling methods performed worse at predicting artificially withheld gaps in NEE than those that accounted for heterogeneous landscapes, while there were only slight differences between footprint models and land-cover maps. We identified and quantified hot spots of carbon fluxes in the landscape (e.g., late growing season emissions from wetlands and small ponds). We resolved distinct seasonality in tundra growing season NEE fluxes. Scaling while assuming a homogeneous landscape overestimated the growing season CO2 sink by a factor of 2 and underestimated CH4 emissions by a factor of 2 when compared to scaling with any method that accounts for landscape heterogeneity. We show how Bayesian MCMC, analytical footprint models, and high-resolution land-cover maps can be leveraged to derive detailed land-cover carbon fluxes from eddy covariance time series. These results demonstrate the importance of landscape heterogeneity when scaling carbon emissions across the Arctic.more » « less
-
Abstract A constellation of satellites is now in orbit providing information about terrestrial carbon and water storage and fluxes. These combined observations show that the tropical biosphere has changed significantly in the last 2 decades from the combined effects of climate variability and land use. Large areas of forest have been cleared in both wet and dry forests, increasing the source of carbon to the atmosphere. Concomitantly, tropical fire emissions have declined, at least until 2016, from changes in land‐use practices and rainfall, increasing the net carbon sink. Measurements of carbon stocks and fluxes from disturbance and recovery and of vegetation photosynthesis show significant regional variability of net biosphere exchange and gross primary productivity across the tropics and are tied to seasonal and interannual changes in water fluxes and storage. Comparison of satellite based estimates of evapotranspiration, photosynthesis, and the deuterium content of water vapor with patterns of total water storage and rainfall demonstrate the presence of vegetation‐atmosphere interactions and feedback mechanisms across tropical forests. However, these observations of stocks, fluxes and inferred interactions between them do not point unambiguously to either positive or negative feedbacks in carbon and water exchanges. These ambiguities highlight the need for assimilation of these new measurements with Earth System models for a consistent assessment of process interactions, along with focused field campaigns that integrate ground, aircraft and satellite measurements, to quantify the controlling carbon and water processes and their feedback mechanisms.more » « less
-
null (Ed.)Forest carbon sequestration offset protocols have been employed for more than 20 years with limited success in slowing deforestation and increasing forest carbon trading volume. Direct measurement of forest carbon flux improves quantification for trading but has not been applied to forest carbon research projects with more than 600 site installations worldwide. In this study, we apply carbon accounting methods, scaling hours to decades to 28-years of scientific CO2 eddy covariance data for the Harvard Forest (US-Ha1), located in central Massachusetts, USA, establishing commercial carbon trading protocols and applications for similar sites. We illustrate and explain transactions of high-frequency direct measurement for CO2 net ecosystem exchange (NEE, gC m−2 year−1) that track and monetize ecosystem carbon dynamics in contrast to approaches that rely on forest mensuration and growth models. NEE, based on eddy covariance methodology, quantifies loss of CO2 by ecosystem respiration accounted for as an unavoidable debit to net carbon sequestration. Retrospective analysis of the US-Ha1 NEE times series including carbon pricing, interval analysis, and ton-year exit accounting and revenue scenarios inform entrepreneur, investor, and landowner forest carbon commercialization strategies. CO2 efflux accounts for ~45% of US-Ha1 NEE, or an error of ~466% if excluded; however, the decades-old coupled human and natural system remains a financially viable net carbon sink. We introduce isoflux NEE for t13C16O2 and t12C18O16O to directly partition and quantify daytime ecosystem respiration and photosynthesis, creating new soil carbon commerce applications and derivative products in contrast to undifferentiated bulk soil carbon pool approaches. Eddy covariance NEE methods harmonize and standardize carbon commerce across diverse forest applications including, a New England, USA regional eddy covariance network, the Paris Agreement, and related climate mitigation platforms.more » « less
An official website of the United States government

